Menu Close

I-n-0-t-2t-sin-2n-tdt-Prove-that-I-n-1-1-e-2pi-pi-0-e-2t-sin-2n-t-dt-and-I-n-1-2sh-pi-pi-n-




Question Number 195320 by Erico last updated on 30/Jul/23
I_n =∫_0 ^( +∞) t^(−2t) sin^(2n) tdt  Prove that I_n =(1/(1−e^(−2π) ))  ∫^( π) _( 0) e^(−2t) sin^(2n) t dt  and  I_n   ∽  _(∞)  (1/(2sh(π)))(√(π/n))
In=0+t2tsin2ntdtProvethatIn=11e2π0πe2tsin2ntdtandIn12sh(π)πn
Answered by witcher3 last updated on 31/Jul/23
I_n =(1/(1−e^(−2π) ))∫_0 ^π e^(−2t) sin^(2n) (t)dt  ∫_0 ^∞ e^(−2t) sin^(2n) (t)=Σ_(k=0) ^∞ ∫_(kπ) ^((k+1)π) e^(−2t) sin^(2n) (t)dt  t−kπ=x⇒dt=dx  =Σ_(k≥0) ∫_0 ^π e^(−2x−2kπ) sin^(2n) (x+kπ)dx  =Σ_(k≥0) e^(−2kπ) ∫_0 ^π e^(−2x) sin^(2n) (x)dx  =(1/(1−e^(−2π) ))∫_0 ^π e^(−2x) sin^(2n) (x)dx...  J_n =∫_0 ^π e^(−2x) sin^(2n) (x)dx  By=[(e^(−2x) /(−2))sin^(2n) (x)]_0 ^π +(1/2)∫_0 ^π 2ncos(t)sin^(2n−1) (t)e^(−2t) dt  =n∫_0 ^π cos(t)sin^(2n−1) (t)e^(−2t) dt  =n[(e^(−2t) /(−2))cos(t)sin^(2n−1) (t)]+(n/2)∫_0 ^π e^(−2t) [−sin^(2n) (t)+(2n−1)cos^2 (t)sin^(2n−2) ]dt  =(n/2)∫_0 ^π [(−2n)sin^(2n) (t)+(2n−1)sin^(2n−2) ]e^(−2t) dt  =−n^2 ∫_0 ^π e^(−2t) sin^(2n) (t)dt+((n(2n−1))/2)∫_0 ^π sin^(2n−2) (t)e^(−2t) dt  =−n^2 J_n +((n(2n−1))/2)J_(n−1)   ⇔(1+n^2 )J_n =((n(2n−1))/2)J_(n−1) ⇔(J_n /J_(n−1) )=((n(2n−1))/(2(1+n^2 )))  ⇒Π_(k=1) ^n (J_k /J_(k−1) )=(J_n /J_0 )=Π_(k=1) ^n ((k(2k−1))/(2(k+i)(k−i)))  =Π_(k=1) ^n ((2k(2k−1))/(4(k+i)(k−i)))=(((2n)!)/4^n ).((Γ(1−i)Γ(1+i))/(Γ(n+1−i)Γ(n+1+i)))  Γ(1+i)Γ(1−i)=iΓ(1−i)Γ(i)=((iπ)/(sin(iπ)))  =(π/(sh(π)))  Γ(n+1+_− i)∼(√(2πn))e^(−n) n^(n+_− i)   Γ(2n+1)=n^(2n) .2^(2n) e^(−2n) 2(√(2πn))  (J_n /J_0 )∼((2(√(2πn)).4^n .n^(2n) e^(−2n) )/(2πn.e^(−2n) n^(2n) .4^n )).(π/(sh(π)))=((2π)/( sh(π)(√(2πn))))  J_0 =∫_0 ^π e^(−2x) =((1−e^(−2π) )/2)  J_n ∼((1−e^(−2π) )/(2sh(π))).((2π)/( (√(2πn))))  I_n =(1/(1−e^(−2π) ))J_n ∼(1/(sh(π))).(√(π/(2n)))
In=11e2π0πe2tsin2n(t)dt0e2tsin2n(t)=k=0kπ(k+1)πe2tsin2n(t)dttkπ=xdt=dx=k00πe2x2kπsin2n(x+kπ)dx=k0e2kπ0πe2xsin2n(x)dx=11e2π0πe2xsin2n(x)dxJn=0πe2xsin2n(x)dxBy=[e2x2sin2n(x)]0π+120π2ncos(t)sin2n1(t)e2tdt=n0πcos(t)sin2n1(t)e2tdt=n[e2t2cos(t)sin2n1(t)]+n20πe2t[sin2n(t)+(2n1)cos2(t)sin2n2]dt=n20π[(2n)sin2n(t)+(2n1)sin2n2]e2tdt=n20πe2tsin2n(t)dt+n(2n1)20πsin2n2(t)e2tdt=n2Jn+n(2n1)2Jn1(1+n2)Jn=n(2n1)2Jn1JnJn1=n(2n1)2(1+n2)nk=1JkJk1=JnJ0=nk=1k(2k1)2(k+i)(ki)=nk=12k(2k1)4(k+i)(ki)=(2n)!4n.Γ(1i)Γ(1+i)Γ(n+1i)Γ(n+1+i)Γ(1+i)Γ(1i)=iΓ(1i)Γ(i)=iπsin(iπ)=πsh(π)Γ(n+1+i)2πnennn+iΓ(2n+1)=n2n.22ne2n22πnJnJ022πn.4n.n2ne2n2πn.e2nn2n.4n.πsh(π)=2πsh(π)2πnJ0=0πe2x=1e2π2Jn1e2π2sh(π).2π2πnIn=11e2πJn1sh(π).π2n

Leave a Reply

Your email address will not be published. Required fields are marked *