Menu Close

Question-195315




Question Number 195315 by cortano12 last updated on 30/Jul/23
      ⋐
$$\:\:\:\:\:\:\Subset \\ $$
Answered by horsebrand11 last updated on 30/Jul/23
 = lim_(x→0)  ((tan^2 a−tan^2 x−tan^2 a+tan^4 a tan^2 x)/(x^2 (1−tan^2 a tan^2 x )))   = lim_(x→0)  ((−tan^2 x(1−tan^4 a ))/(x^2 (1−tan^2 a tan^2 x )))   =  determinant (((−((1−tan^4 a)/(1−tan^4 a)) = −1)))
$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{a}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{a}+\mathrm{tan}\:^{\mathrm{4}} \mathrm{a}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{a}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:\right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{4}} \mathrm{a}\:\right)}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{a}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:\right)} \\ $$$$\:=\:\begin{array}{|c|}{−\frac{\mathrm{1}−\mathrm{tan}\:^{\mathrm{4}} \mathrm{a}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{4}} \mathrm{a}}\:=\:−\mathrm{1}}\\\hline\end{array} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *