Menu Close

Question-195369




Question Number 195369 by Shlock last updated on 31/Jul/23
Answered by witcher3 last updated on 01/Aug/23
x=−y  ⇒f(f(0))=2f(x^2 )  ⇒(1/2)f(f(0))=f(x^2 )  ∀(x,y)∈Z^2 f(x^2 )=f(y^2 )=((f(f(0)))/2)  ⇒f is not one to one not injective  f(1)=f(4)=f(9)....=f(n^2 )
$$\mathrm{x}=−\mathrm{y} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{0}\right)\right)=\mathrm{2f}\left(\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\mathrm{f}\left(\mathrm{f}\left(\mathrm{0}\right)\right)=\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\forall\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{Z}\:^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)=\mathrm{f}\left(\mathrm{y}^{\mathrm{2}} \right)=\frac{\mathrm{f}\left(\mathrm{f}\left(\mathrm{0}\right)\right)}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{not}\:\mathrm{one}\:\mathrm{to}\:\mathrm{one}\:\mathrm{not}\:\mathrm{injective} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{f}\left(\mathrm{4}\right)=\mathrm{f}\left(\mathrm{9}\right)….=\mathrm{f}\left(\mathrm{n}^{\mathrm{2}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *