Menu Close

show-that-for-any-natural-number-n-the-natural-number-3-5-n-3-5-n-is-divisible-by-2-n-




Question Number 195364 by Rodier97 last updated on 01/Aug/23
  show that for any natural number n,   the natural number (3−(√5))^n +(3+(√5))^n  is divisible  by 2^n .
showthatforanynaturalnumbern,thenaturalnumber(35)n+(3+5)nisdivisibleby2n.
Answered by Frix last updated on 31/Jul/23
Obviously some factors cancel out and  others add. 2 simple examples:  (a−b)^2 +(a+b)^2 =  =(a^2 −2ab+b^2 )+(a^2 +2ab+b^2 )=  =2(a^2 +b^2 )  (a−b)^3 +(a+b)^3 =  =(a^3 −3a^2 b+3ab^2 −b^3 )+(a^3 +3a^2 b+3ab^2 +b^3 )=  =2a(a^2 +3b^2 )  This should be enough to see to prove.  (Also if b=(√β) ∧β∈N it′s easy to see only factors  b^(2k) ∈N “survive” ⇒ (a−(√β))^n +(a+(√β))^n ∈N)
Obviouslysomefactorscanceloutandothersadd.2simpleexamples:(ab)2+(a+b)2==(a22ab+b2)+(a2+2ab+b2)==2(a2+b2)(ab)3+(a+b)3==(a33a2b+3ab2b3)+(a3+3a2b+3ab2+b3)==2a(a2+3b2)Thisshouldbeenoughtoseetoprove.(Alsoifb=ββNitseasytoseeonlyfactorsb2kNsurvive(aβ)n+(a+β)nN)

Leave a Reply

Your email address will not be published. Required fields are marked *