Menu Close

calcu-late-lim-x-pi-2-sin-x-tan-2-x-determinant-




Question Number 195401 by mnjuly1970 last updated on 01/Aug/23
                         calcu_⇓_⇓  late                lim_( x→(π/2))  (  sin(x ))^( tan^( 2) (x ))     = ?         determinant ((),())
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calc}\underset{\underset{\Downarrow} {\Downarrow}} {\mathrm{u}late} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\left(\:\:\mathrm{sin}\left(\mathrm{x}\:\right)\right)^{\:\mathrm{tan}^{\:\mathrm{2}} \left(\mathrm{x}\:\right)} \:\:\:\:=\:?\:\:\:\:\:\:\:\:\begin{array}{|c|c|}\\\\\hline\end{array} \\ $$$$ \\ $$$$ \\ $$
Answered by MM42 last updated on 01/Aug/23
e^(lim_(x→(π/2))  (sinx−1)tan^2  x) =e^(lim_(x→(π/2))  (((sinx−1)sin^2 x)/(cos^2 x)))   hop =e^(lim_(x→(π/2))  (((1/2)sin2xsinx+(sinx−1)sin2x)/(−sin2x)))   =e^(lim_(x→(π/2))  (((1/2)sinx+(sinx−1))/(−1))) =e^(−(1/2)) =(1/( (√e))) ✓
$${e}^{{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\left({sinx}−\mathrm{1}\right){tan}^{\mathrm{2}} \:{x}} ={e}^{{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\frac{\left({sinx}−\mathrm{1}\right){sin}^{\mathrm{2}} {x}}{{cos}^{\mathrm{2}} {x}}} \\ $$$${hop}\:={e}^{{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\frac{\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{xsinx}+\left({sinx}−\mathrm{1}\right){sin}\mathrm{2}{x}}{−{sin}\mathrm{2}{x}}} \\ $$$$={e}^{{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\frac{\frac{\mathrm{1}}{\mathrm{2}}{sinx}+\left({sinx}−\mathrm{1}\right)}{−\mathrm{1}}} ={e}^{−\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{1}}{\:\sqrt{{e}}}\:\checkmark \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *