Question Number 195385 by Rodier97 last updated on 01/Aug/23
$$ \\ $$$$ \\ $$$$\mathrm{lim}_{{x}\Rightarrow\mathrm{a}^{+} } \:\:\:\:\frac{\sqrt{{x}}\:−\sqrt{\mathrm{a}}\:−\sqrt{{x}−\mathrm{a}}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:\:;\:\:\mathrm{a}\:>\:\mathrm{0} \\ $$
Answered by cortano12 last updated on 01/Aug/23
$$\:=\:\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}}\:\left(\frac{\frac{\mathrm{x}−\mathrm{a}}{\:\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{a}}}\:−\sqrt{\mathrm{x}−\mathrm{a}}}{\:\sqrt{\mathrm{x}+\mathrm{a}}\:\sqrt{\mathrm{x}−\mathrm{a}}}\:\right) \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}}\:\left(\frac{\frac{\sqrt{\mathrm{x}−\mathrm{a}}}{\:\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{a}}}\:−\mathrm{1}}{\:\sqrt{\mathrm{x}+\mathrm{a}}}\right) \\ $$$$\:=\:\frac{\mathrm{0}−\mathrm{1}}{\:\sqrt{\mathrm{2a}}}\:=\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2a}}} \\ $$