Menu Close

prove-that-lim-x-0-k-1-n-1-1-2k-x-n-1-x-1-4-C-2n-n-1-n-




Question Number 195393 by Erico last updated on 01/Aug/23
prove that   lim_(x→0)  (((Σ_(k=1) ^n (1−(1/(2k)))^x )/n))^(1/(  x  ))  = (1/4)(C_(2n) ^n )^(1/n)
provethatlimx0nk=1(112k)xnx=14C2nnn
Answered by witcher3 last updated on 01/Aug/23
f(t)=t^x =e^(xln(t)) =1+xln(t)+o(x),x→0  Σ_(k=1) ^n (1−(1/(2k)))^x =Σ(1+xln(1−(1/(2k)))+o(x))  =n+xln(Π_(k=1) ^n (((2k−1)/(2k))))+o(x)  =n+xln(Π_(k=1) ^n (((2k)(2k−1))/(4k^2 )))+o(x)  =n+xln((((2n)!)/(4^n (n!)^2 )))+o(x)=n+xln((1/4^n )C_(2n) ^n )+o(x)  lim_(x→0) (((1/n)Σ_(k=1) ^n (1−(1/(2k)))^x ))^(1/x) =lim_(x→0) e^((1/x)ln((1/n)(n+xln((1/4^n )C_(2n) ^n )+o(x)))   =lim_(x→0) e^((ln(1+(x/n)ln((1/4^n )C_(2n) ^n )+o(1)))/x) =e^(lim_(x→0) ((ln(1+(x/n)ln((C_(2n) ^n /4^n ))+o(1)))/x))   ≪exp is continus≫  =e^(lim_(x→0) (((x/n)ln((C_(2n) ^n /4^n ))+o(1))/x)) =e^(ln(((C_(2n) ^n /4^n ))^(1/n) )) =((C_(2n) ^n /4^n ))^(1/n)   (1/4)(C_(2n) ^n )^(1/n)
f(t)=tx=exln(t)=1+xln(t)+o(x),x0nk=1(112k)x=Σ(1+xln(112k)+o(x))=n+xln(nk=1(2k12k))+o(x)=n+xln(nk=1(2k)(2k1)4k2)+o(x)=n+xln((2n)!4n(n!)2)+o(x)=n+xln(14nC2nn)+o(x)limx01nnk=1(112k)xx=limex01xln(1n(n+xln(14nC2nn)+o(x))=limex0ln(1+xnln(14nC2nn)+o(1))x=elimx0ln(1+xnln(C2nn4n)+o(1))xexpiscontinus=elimx0xnln(C2nn4n)+o(1)x=eln(C2nn4nn)=C2nn4nn14C2nnn

Leave a Reply

Your email address will not be published. Required fields are marked *