prove-that-lim-x-0-k-1-n-1-1-2k-x-n-1-x-1-4-C-2n-n-1-n- Tinku Tara August 1, 2023 Set Theory 0 Comments FacebookTweetPin Question Number 195393 by Erico last updated on 01/Aug/23 provethatlimx→0∑nk=1(1−12k)xnx=14C2nnn Answered by witcher3 last updated on 01/Aug/23 f(t)=tx=exln(t)=1+xln(t)+o(x),x→0∑nk=1(1−12k)x=Σ(1+xln(1−12k)+o(x))=n+xln(∏nk=1(2k−12k))+o(x)=n+xln(∏nk=1(2k)(2k−1)4k2)+o(x)=n+xln((2n)!4n(n!)2)+o(x)=n+xln(14nC2nn)+o(x)limx→01n∑nk=1(1−12k)xx=limex→01xln(1n(n+xln(14nC2nn)+o(x))=limex→0ln(1+xnln(14nC2nn)+o(1))x=elimx→0ln(1+xnln(C2nn4n)+o(1))x≪expiscontinus≫=elimx→0xnln(C2nn4n)+o(1)x=eln(C2nn4nn)=C2nn4nn14C2nnn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-195395Next Next post: lim-x-a-x-a-x-a-x-2-a-2-a-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.