Question Number 195421 by MathedUp last updated on 02/Aug/23

Answered by witcher3 last updated on 02/Aug/23

Commented by witcher3 last updated on 02/Aug/23
![Small ΩCircle radius ε Big Γ radius R L=[−R,−ε],L′=[ε,R] Γ=Re^(ia) ,a∈[0,π] c=εe^(ia) ,a∈[0,π] D=Ω∪Γ∪L∪L′ f(z)=(e^(iz) /(z(1+z^2 ))),hase Twos pols in D z^2 +1=0,z=i ∫_D f(z)dz=2iπRes(f,i,)=2iπ.(e^(−1) /(i(2i)))=(π/(ie)) ∫_(−R) ^(−ε) f(z)dz+∫_π ^0 f(εe^(ia) ).iεe^(ia) da+∫_ε ^R f(z)dz+∫_0 ^π f(Re^(ia) )iRe^(ia) da ∫_(−R) ^(−ε) f(z)dz+∫_ε ^R f(z)dz=∫_ε ^R (f(z)+f(−z))dz =2i∫_ε ^R ((sin(z))/(z(1+z^2 )))dz lim_(ε→0) ∫_π ^0 f(εe^(ia) )iεe^(ia) da=lim_(ε→0) i∫_π ^0 (e^(iεe^(ia) ) /((1+ε^2 e^(2ia) )))da integral Cv uniformaly =i∫_π ^0 lim_(ε→0) (e^(iεe^(ia) ) /(1+ε^2 e^(2ia) ))da=−iπ lim_(ε→0) ∫_Ω f(z)dz=−iπ ∫_0 ^π f(Re^(ia) )iRe^(ia) da=i∫_0 ^π (e^(iRe^(ia) ) /(1+R^2 e^(2ia) ))da =i∫_0 ^π ((e^(iRcos(a)) .e^(−Rsin(a)) )/(1+R^2 e^(2ia) )) p ∣((e^(iRcos(a)) .e^(−Rsin(a)) )/(1+R^2 e^(2ia) ))∣≤(e^(−Rsin(a)) /(R^2 −1))⇒ =lim_(R→∞) ∣i∫_0 ^π ((e^(iRcos(a)) .e^(−Rsin(a)) )/(1+R^2 e^(2ia) ))∣da≤∫_0 ^π lim_(R→∞) (e^(−Rsin(a)) /(R^2 −1))da =0 lim_(R→∞) ∫_Γ f(z)dz=0 lim_(ε→0,R→∞) ∫_D f(z)dz=2i∫_0 ^∞ ((sin(z))/(z(1+z^2 )))dz−iπ+0=(π/(ie)) ∫_0 ^∞ ((sin(x))/(x(1+x^2 )))dx=(π/2)−(π/(2e))=(π/2)(((e−1)/e))](https://www.tinkutara.com/question/Q195429.png)
Answered by senestro last updated on 02/Aug/23

Answered by witcher3 last updated on 02/Aug/23

Answered by witcher3 last updated on 02/Aug/23

Commented by MathedUp last updated on 03/Aug/23

Commented by witcher3 last updated on 03/Aug/23

Commented by MM42 last updated on 03/Aug/23

Commented by witcher3 last updated on 09/Aug/23
