Menu Close

lim-x-x-ln-e-x-1-e-x-1-




Question Number 195453 by Rodier97 last updated on 02/Aug/23
    lim_(x→+∞  )  x ln(((e^x + 1)/(e^x −1)))  ?
$$\:\:\:\:\mathrm{lim}_{{x}\rightarrow+\infty\:\:} \:{x}\:{ln}\left(\frac{{e}^{{x}} +\:\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)\:\:? \\ $$
Commented by Frix last updated on 02/Aug/23
0
$$\mathrm{0} \\ $$
Answered by MM42 last updated on 02/Aug/23
lim_(x→∞)  ln(((e^x +1)/(e^x −1)))^x    ★  A=(((e^x +1)/(e^x −1)))^x ⇒lim_(x→∞) A=e^(lim_(x→∞)  (((e^x +1)/(e^x −1))−1)x)     =e^(lim_(x→∞)  (((e^x +1)/(e^x −1))−1)x)  =e^(lim_(x→∞)  (((2x)/(e^x −1)))) =e^0 =1  ⇒★=ln1=0 ✓
$${lim}_{{x}\rightarrow\infty} \:{ln}\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)^{{x}} \:\:\:\bigstar \\ $$$${A}=\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)^{{x}} \Rightarrow{lim}_{{x}\rightarrow\infty} {A}={e}^{{lim}_{{x}\rightarrow\infty} \:\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}−\mathrm{1}\right){x}} \:\: \\ $$$$={e}^{{lim}_{{x}\rightarrow\infty} \:\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}−\mathrm{1}\right){x}} \:={e}^{{lim}_{{x}\rightarrow\infty} \:\left(\frac{\mathrm{2}{x}}{{e}^{{x}} −\mathrm{1}}\right)} ={e}^{\mathrm{0}} =\mathrm{1} \\ $$$$\Rightarrow\bigstar={ln}\mathrm{1}=\mathrm{0}\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *