Question Number 195436 by MrGHK last updated on 02/Aug/23
$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(ā\boldsymbol{\mathrm{a}}\right)^{ā\boldsymbol{\mathrm{n}}} }{\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)^{\mathrm{2}} }\left(\boldsymbol{\psi}\left(\frac{\boldsymbol{\mathrm{n}}+\mathrm{4}}{\mathrm{2}}\right)ā\boldsymbol{\psi}\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}\right)\right)=??? \\ $$
Answered by witcher3 last updated on 02/Aug/23
$$\Psi\left(\mathrm{1}+\mathrm{x}\right)=ā\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}ā\mathrm{x}^{\mathrm{s}} }{\mathrm{1}ā\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{S}=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(ā\mathrm{a}\right)^{ā\boldsymbol{\mathrm{n}}} }{\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)^{\mathrm{2}} }\left(\boldsymbol{\Psi}\left(\frac{\mathrm{n}+\mathrm{4}}{\mathrm{2}}\right)ā\Psi\left(\frac{\mathrm{n}+\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$=\Sigma\frac{\left(ā\mathrm{a}\right)^{ā\mathrm{n}} }{\left(\mathrm{n}+\mathrm{2}\right)}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}} ā\mathrm{x}^{\frac{\mathrm{n}+\mathrm{2}}{\mathrm{2}}} }{\mathrm{1}ā\mathrm{x}}\mathrm{dx}\right. \\ $$$$=\mathrm{a}^{\mathrm{2}} \underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(ā\frac{\mathrm{1}}{\mathrm{a}}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+\sqrt{\mathrm{x}}}\mathrm{dx} \\ $$$$=\mathrm{a}^{\mathrm{2}} \underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\left(\frac{\left(ā\frac{\mathrm{1}}{\mathrm{a}}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\frac{\mathrm{n}+\mathrm{2}}{\mathrm{2}}} }{\:\sqrt{\mathrm{x}}\left(\mathrm{1}+\sqrt{\mathrm{x}}\right)}\mathrm{dx},\sqrt{\mathrm{x}}=\mathrm{y},\forall\mid\mathrm{a}\mid\geqslant\mathrm{1}\right. \\ $$$$=\mathrm{2a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(ā\frac{\mathrm{y}}{\mathrm{a}}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }.\frac{\mathrm{dy}}{\mathrm{1}+\mathrm{y}} \\ $$$$\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }=\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right) \\ $$$$=\mathrm{2a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{Li}_{\mathrm{2}} \left(ā\frac{\mathrm{y}}{\mathrm{a}}\right)+\frac{\mathrm{y}}{\mathrm{a}}}{\mathrm{1}+\mathrm{y}}\mathrm{dy} \\ $$$$=\mathrm{2a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{Li}_{\mathrm{2}} \left(ā\frac{\mathrm{y}}{\mathrm{a}}\right)}{\mathrm{1}+\mathrm{y}}\mathrm{dy}+\mathrm{2a}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{y}}{\mathrm{1}+\mathrm{y}}\mathrm{dy} \\ $$$$=\mathrm{2a}^{\mathrm{3}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{a}}} \frac{\mathrm{Li}_{\mathrm{2}} \left(ā\mathrm{y}\right)}{\mathrm{1}+\mathrm{ay}}…\mathrm{verry}\:\mathrm{long}\:\mathrm{calculate} \\ $$$$ \\ $$
Commented by MathedUp last updated on 02/Aug/23
$$\mathrm{Wow}\:\mathrm{You}\:\mathrm{R}\:\mathrm{Hero}\:\mathrm{LOL} \\ $$$$\left.\mathrm{u}\:\mathrm{always}\:\mathrm{come}\:\mathrm{out}\:\mathrm{everywhere}\::\right) \\ $$
Commented by MrGHK last updated on 03/Aug/23
$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(ā\boldsymbol{\mathrm{a}}\right)^{ā\boldsymbol{\mathrm{n}}} }{\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)^{\mathrm{2}} }\left(\boldsymbol{\psi}\left(\frac{\boldsymbol{\mathrm{n}}+\mathrm{4}}{\mathrm{2}}\right)ā\boldsymbol{\psi}\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$\boldsymbol{\mathrm{Y}}{ou}\:{are}\:{really}\:{a}\:{brilliant}\:{man} \\ $$
Commented by witcher3 last updated on 04/Aug/23
$$\mathrm{thak}\:\mathrm{You}\:\mathrm{god}\:\mathrm{bless}\:\mathrm{You}\:\mathrm{hard}\left[\mathrm{worck}\:\mathrm{and}\:\mathrm{passion}\right. \\ $$