Question Number 195454 by universe last updated on 02/Aug/23

Commented by mr W last updated on 03/Aug/23

Answered by Frix last updated on 03/Aug/23

Commented by universe last updated on 03/Aug/23

Answered by witcher3 last updated on 03/Aug/23

Commented by AST last updated on 03/Aug/23

Commented by witcher3 last updated on 03/Aug/23

Commented by AST last updated on 03/Aug/23

Answered by witcher3 last updated on 03/Aug/23
![a^3 +b^3 +c^3 =4((a^3 /(a^2 +b^2 +c^2 ))+(b^3 /(a^2 +b^2 +c^2 ))+(c^3 /(a^2 +b^2 +c^3 ))) =4(((a^3 +b^3 +c^3 )/(b^2 +c^2 +a^2 ))) M∈R_+ ,a^3 +b^3 +c^3 ≤M(a^2 +b^2 +c^2 ) M=max {a,b,c}=a;a^3 +b^3 +c^3 ≤a^3 +a(b^2 +c^2 ) true if a≥1 a^2 +b^2 +c^2 ≤3max{a^2 ,b^2 ,c^2 } max{a^2 ,b^2 ,c^2 }=max^2 {a,b,c}≥(4/3)⇒m≥(2/( (√3)))>1.. True ,hence Get idea if one of a,b,c Get bigger a^3 +b^3 +c^3 get bigger a=2,b=c=0 a^3 +b^3 +c^3 =8 a^3 +b^3 +c^3 ≤8...∀(a,b,c)∣a^2 +b^2 +c^2 =4⇒(a,b,c)∈[0,2]^2 8=2(a^2 +b^2 +c^2 ) a^3 +b^3 +c^3 =a.a^2 +b.b^2 +c.c^2 ≤2a^2 +2b^2 +2c^2 =2(a^2 +b^2 +c^2 )=8](https://www.tinkutara.com/question/Q195486.png)
Answered by universe last updated on 04/Aug/23
![LET a= 2sin α cos β b = 2 sin α sin β c = 2 cos α a^3 + b^3 +c^(3 ) = 8[sin^3 α(cos^3 β + sin^3 β)+cos^3 α]_(max = 1) max(a^3 +b^3 +c^3 ) = 8](https://www.tinkutara.com/question/Q195516.png)