Menu Close

Question-195454




Question Number 195454 by universe last updated on 02/Aug/23
Commented by mr W last updated on 03/Aug/23
see also Q157749
seealsoQ157749
Answered by Frix last updated on 03/Aug/23
a=2 b=c=0  2^3 =8
a=2b=c=023=8
Commented by universe last updated on 03/Aug/23
i know this method   but i want solution in mathematics form
iknowthismethodbutiwantsolutioninmathematicsform
Answered by witcher3 last updated on 03/Aug/23
use (((Σ_(i=1) ^n x_i ^q )/n))^(1/q) =f(q) increse function   ⇒(((a^3 +b^3 +c^3 )/3))^(1/3) ≥(((a^2 +b^2 +c^2 )/3))^(1/2) =(2/( (√3)))  ⇒a^3 +b^3 +c^2 ≥(8/(3(√3))).3=(8/( (√3)))  a=b=c⇒(2/( (√3)))
useni=1xiqnq=f(q)incresefunctiona3+b3+c333(a2+b2+c23)12=23a3+b3+c2833.3=83a=b=c23
Commented by AST last updated on 03/Aug/23
This is minimum value.
Thisisminimumvalue.
Commented by witcher3 last updated on 03/Aug/23
yes i dont know why in my mind this is the Quation
yesidontknowwhyinmymindthisistheQuation
Commented by AST last updated on 03/Aug/23
It seems so.
Itseemsso.
Answered by witcher3 last updated on 03/Aug/23
a^3 +b^3 +c^3 =4((a^3 /(a^2 +b^2 +c^2 ))+(b^3 /(a^2 +b^2 +c^2 ))+(c^3 /(a^2 +b^2 +c^3 )))  =4(((a^3 +b^3 +c^3 )/(b^2 +c^2 +a^2 )))  M∈R_+ ,a^3 +b^3 +c^3 ≤M(a^2 +b^2 +c^2 )  M=max {a,b,c}=a;a^3 +b^3 +c^3 ≤a^3 +a(b^2 +c^2 )  true if a≥1  a^2 +b^2 +c^2 ≤3max{a^2 ,b^2 ,c^2 }  max{a^2 ,b^2 ,c^2 }=max^2 {a,b,c}≥(4/3)⇒m≥(2/( (√3)))>1..  True ,hence Get idea if one of a,b,c Get bigger  a^3 +b^3 +c^3  get bigger  a=2,b=c=0  a^3 +b^3 +c^3 =8  a^3 +b^3 +c^3 ≤8...∀(a,b,c)∣a^2 +b^2 +c^2 =4⇒(a,b,c)∈[0,2]^2   8=2(a^2 +b^2 +c^2 )  a^3 +b^3 +c^3 =a.a^2 +b.b^2 +c.c^2 ≤2a^2 +2b^2 +2c^2 =2(a^2 +b^2 +c^2 )=8
a3+b3+c3=4(a3a2+b2+c2+b3a2+b2+c2+c3a2+b2+c3)=4(a3+b3+c3b2+c2+a2)MR+,a3+b3+c3M(a2+b2+c2)M=max{a,b,c}=a;a3+b3+c3a3+a(b2+c2)trueifa1a2+b2+c23max{a2,b2,c2}max{a2,b2,c2}=max2{a,b,c}43m23>1..True,henceGetideaifoneofa,b,cGetbiggera3+b3+c3getbiggera=2,b=c=0a3+b3+c3=8a3+b3+c38(a,b,c)a2+b2+c2=4(a,b,c)[0,2]28=2(a2+b2+c2)a3+b3+c3=a.a2+b.b2+c.c22a2+2b2+2c2=2(a2+b2+c2)=8
Answered by universe last updated on 04/Aug/23
LET   a= 2sin α cos β   b = 2 sin α sin β   c = 2 cos α  a^3 + b^3 +c^(3 )  =  8[sin^3 α(cos^3 β + sin^3 β)+cos^3 α]_(max = 1)       max(a^3 +b^3 +c^3 )  = 8
LETa=2sinαcosβb=2sinαsinβc=2cosαa3+b3+c3=8[sin3α(cos3β+sin3β)+cos3α]max=1max(a3+b3+c3)=8

Leave a Reply

Your email address will not be published. Required fields are marked *