Menu Close

x-0-i-1-n-ix-i-1-




Question Number 195419 by CrispyXYZ last updated on 02/Aug/23
x≠0. Σ_(i=1) ^n ix^(i−1) =?
x0.ni=1ixi1=?
Answered by MathedUp last updated on 02/Aug/23
x≠0. Σ_(i=1) ^n ix^(i−1) =?  Σ_(k=1) ^m kx^(k−1) =((d  )/dx) Σ x^k =((d  )/dx) ((x(x^n −1))/(x−1))
x0.ni=1ixi1=?mk=1kxk1=ddxΣxk=ddxx(xn1)x1
Commented by MathedUp last updated on 02/Aug/23
∴ ((m∙x^(m+1) −(m+1)∙x^m +1)/((x−1)^2 ))
mxm+1(m+1)xm+1(x1)2
Commented by MathedUp last updated on 02/Aug/23
Bonus if x→1  Σ_(k=1) ^m k∙x^(k−1) =Σ_(k=1) ^m k  lim_(x→1)  ((m∙x^(m+1) −(m+1)x^m +1)/((x−1)^2 ))=((m(m+1))/2)  and we can get Ramanujan Sum by  Change this Equation  So Funny :⟩
Bonusifx1mk=1kxk1=mk=1klimx1mxm+1(m+1)xm+1(x1)2=m(m+1)2andwecangetRamanujanSumbyChangethisEquationSoFunny:

Leave a Reply

Your email address will not be published. Required fields are marked *