Question Number 195484 by Shlock last updated on 03/Aug/23
Answered by mr W last updated on 03/Aug/23
Commented by mr W last updated on 03/Aug/23
$${c}=\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}} \\ $$$$\left({c}+{b}\right)^{\mathrm{2}} +\left({s}−{b}\right)^{\mathrm{2}} =\left({c}+{a}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{2}{s}\left({c}+{a}\right)\mathrm{cos}\:\frac{\mathrm{450}°}{\mathrm{7}} \\ $$$$\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{b}\right)^{\mathrm{2}} +\left({s}−{b}\right)^{\mathrm{2}} =\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{a}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{2}{s}\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{a}\right)\mathrm{cos}\:\frac{\mathrm{450}°}{\mathrm{7}} \\ $$$${let}\:{p}=\frac{{a}}{{s}},\:{q}=\frac{{b}}{{s}} \\ $$$$\Rightarrow\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{q}\right)^{\mathrm{2}} +\left(\mathrm{1}−{q}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{p}\right)^{\mathrm{2}} +\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{p}\right)\mathrm{cos}\:\frac{\mathrm{450}°}{\mathrm{7}} \\ $$$$\left({c}+{b}\right)^{\mathrm{2}} +\left({c}+{a}\right)^{\mathrm{2}} −\mathrm{2}\left({c}+{b}\right)\left({c}+{a}\right)\mathrm{cos}\:\frac{\mathrm{540}°}{\mathrm{7}}=\left({s}−{b}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{2}\left({s}−{b}\right){s}\:\mathrm{cos}\:\frac{\mathrm{900}°}{\mathrm{7}} \\ $$$$\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{b}\right)^{\mathrm{2}} +\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{a}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{b}\right)\left(\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{a}\right)\mathrm{cos}\:\frac{\mathrm{540}°}{\mathrm{7}}=\left({s}−{b}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} +\mathrm{2}\left({s}−{b}\right){s}\:\mathrm{cos}\:\frac{\mathrm{360}°}{\mathrm{7}} \\ $$$$\Rightarrow\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{q}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{p}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{q}\right)\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{270}°}{\mathrm{7}}}+{p}\right)\mathrm{cos}\:\frac{\mathrm{540}°}{\mathrm{7}}=\left(\mathrm{1}−{q}\right)^{\mathrm{2}} +\mathrm{1}+\mathrm{2}\left(\mathrm{1}−{q}\right)\:\mathrm{cos}\:\frac{\mathrm{360}°}{\mathrm{7}} \\ $$$$\Rightarrow{p}\approx\mathrm{0}.\mathrm{57064},\:{q}\approx\mathrm{0}.\mathrm{28532} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\frac{{p}}{{q}}=\mathrm{2}\:\checkmark \\ $$
Commented by Shlock last updated on 03/Aug/23
Very great solution, Prof!