Question Number 195521 by bbbbbbbb last updated on 04/Aug/23
$$\mathrm{2}^{\boldsymbol{\mathrm{a}}} =\mathrm{50}\:\:\:\:\boldsymbol{\mathrm{find}}\:\mathrm{2}^{\mathrm{2}\boldsymbol{\mathrm{a}}−\mathrm{2}} =? \\ $$$$\boldsymbol{\mathrm{soon}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{soon}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{so}} \\ $$
Answered by Calculusboy last updated on 04/Aug/23
$$\mathrm{625} \\ $$
Commented by bbbbbbbb last updated on 04/Aug/23
$$\boldsymbol{\mathrm{think}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{sir}} \\ $$
Answered by Rasheed.Sindhi last updated on 04/Aug/23
$$\mathrm{2}^{{a}} =\mathrm{50} \\ $$$$\frac{\mathrm{2}^{{a}} }{\mathrm{2}}=\frac{\mathrm{50}}{\mathrm{2}} \\ $$$$\mathrm{2}^{{a}−\mathrm{1}} =\mathrm{25} \\ $$$$\left(\mathrm{2}^{{a}−\mathrm{1}} \right)^{\mathrm{2}} =\left(\mathrm{25}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}^{\mathrm{2}{a}−\mathrm{2}} =\mathrm{625} \\ $$
Commented by mr W last updated on 11/Aug/23
$${could}\:{you}\:{give}\:{a}\:{look}\:{at}\:{the}\:{questions} \\ $$$${Q}\mathrm{195672}\:{and}\:{Q}\mathrm{195666}\:{sir}? \\ $$
Commented by Rasheed.Sindhi last updated on 11/Aug/23
$$\boldsymbol{{Sir}}\:{very}\:{sorry}!\:{It}'{s}\:{beyond}\:{my} \\ $$$${capability}. \\ $$
Commented by mr W last updated on 11/Aug/23
$${it}'{s}\:{allright}!\:{thanks}\:{for}\:{replying}\:{sir}! \\ $$