Menu Close

a-i-b-i-x-i-be-reals-for-i-1-2-3-n-such-that-i-1-n-a-i-x-i-0-Prove-that-i-1-n-x-i-2-i-1-n-a-i-2-i-1-n-b-i-2-i-1-n-a-i-b-i-2-i-1-n-a-i-2-




Question Number 195569 by York12 last updated on 05/Aug/23
a_i ,b_i ,x_i be reals for i=1,2,3,...,n, such that  Σ_(i=1) ^n [a_i x_i ]=0. Prove that  (Σ_(i=1) ^n [x_i ^2 ])(Σ_(i=1) ^n [a_i ^2 ]Σ_(i=1) ^n [b_i ^2 ]−(Σ_(i=1) ^n [a_i b_i ])^2 )≥(Σ_(i=1) ^n [a_i ^2 ])(Σ_(i=1) ^n [b_i x_i ])^2
ai,bi,xiberealsfori=1,2,3,,n,suchthati=1n[aixi]=0.Provethat(ni=1[xi2])(ni=1[ai2]ni=1[bi2](ni=1[aibi])2)(ni=1[ai2])(ni=1[bixi])2

Leave a Reply

Your email address will not be published. Required fields are marked *