Menu Close

a-i-b-i-x-i-be-reals-for-i-1-2-3-n-such-that-i-1-n-a-i-x-i-0-Prove-that-i-1-n-x-i-2-i-1-n-a-i-2-i-1-n-b-i-2-i-1-n-a-i-b-i-2-i-1-n-a-i-2-




Question Number 195569 by York12 last updated on 05/Aug/23
a_i ,b_i ,x_i be reals for i=1,2,3,...,n, such that  Σ_(i=1) ^n [a_i x_i ]=0. Prove that  (Σ_(i=1) ^n [x_i ^2 ])(Σ_(i=1) ^n [a_i ^2 ]Σ_(i=1) ^n [b_i ^2 ]−(Σ_(i=1) ^n [a_i b_i ])^2 )≥(Σ_(i=1) ^n [a_i ^2 ])(Σ_(i=1) ^n [b_i x_i ])^2
$${a}_{{i}} ,{b}_{{i}} ,{x}_{{i}} {be}\:{reals}\:{for}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},…,{n},\:{such}\:{that} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \left[{a}_{{i}} {x}_{{i}} \right]=\mathrm{0}.\:{Prove}\:{that} \\ $$$$\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{x}_{{i}} ^{\mathrm{2}} \right]\right)\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}} ^{\mathrm{2}} \right]\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{b}_{{i}} ^{\mathrm{2}} \right]−\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}} {b}_{{i}} \right]\right)^{\mathrm{2}} \right)\geqslant\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}} ^{\mathrm{2}} \right]\right)\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{b}_{{i}} {x}_{{i}} \right]\right)^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *