Question Number 195651 by York12 last updated on 06/Aug/23
$$\mathrm{0}<{x}<\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{1}} }+\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }+\frac{\mathrm{8}{x}^{\mathrm{7}} }{\mathrm{1}+{x}^{\mathrm{8}} }+\frac{\mathrm{16}{x}^{\mathrm{15}} }{\mathrm{1}+{x}^{\mathrm{16}} }+….+\infty \\ $$$${evaluate}\:{the}\:{previous}\:{summation} \\ $$
Answered by witcher3 last updated on 06/Aug/23
$$\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{2}^{\mathrm{n}} \mathrm{x}^{\mathrm{2}^{\mathrm{n}} −\mathrm{1}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}^{\mathrm{n}} } }=\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{t}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}^{\mathrm{n}} } \right)=\mathrm{ln}\left(\underset{\mathrm{n}\geqslant\mathrm{0}} {\prod}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}^{\mathrm{n}} } \right)\right) \\ $$$$\mathrm{1}+\mathrm{x}=\frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}} \\ $$$$=\mathrm{ln}\left(\underset{\mathrm{n}\geqslant\mathrm{0}} {\prod}\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}^{\mathrm{n}+\mathrm{1}} } }{\mathrm{1}−\mathrm{t}^{\mathrm{2}^{\mathrm{n}} } }\right)=\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}ln}\left(\underset{\mathrm{0}} {\overset{\mathrm{N}} {\prod}}\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}^{\mathrm{n}+\mathrm{1}} } }{\mathrm{1}−\mathrm{t}^{\mathrm{2}^{\mathrm{n}} } }\right) \\ $$$$=\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}ln}\left(\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}^{\mathrm{N}+\mathrm{1}} } }{\mathrm{1}−\mathrm{t}}\right)=−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)=\int_{\mathrm{0}} ^{\mathrm{t}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}} \\ $$
Commented by York12 last updated on 07/Aug/23
$${should}\:{I}\:{get}\:{through}\:{calculus} \\ $$$${or}\:{I}\:{can}\:{skip}\:{it}\:{and}\:{study}\:{real}\:{analysis} \\ $$
Commented by witcher3 last updated on 07/Aug/23
$$\mathrm{in}\:\mathrm{Maths}\:\mathrm{You}\:\mathrm{can}'\mathrm{t}\:\mathrm{skip}\:\mathrm{lesson}\:\mathrm{all}\:\mathrm{are}\:\mathrm{usufull} \\ $$$$\mathrm{Geometrie}\:\mathrm{related}\:\mathrm{algebra}\:\mathrm{withe}\:\mathrm{analysis} \\ $$$$\mathrm{withe}\:\mathrm{number}\:\mathrm{theory} \\ $$$$\mathrm{geometrie}\:\&\mathrm{algebra}\:\mathrm{Geometric}−\mathrm{algebra} \\ $$$$\mathrm{number}\:\mathrm{theorie}\:+\mathrm{analysis}=\mathrm{modular}\:\mathrm{forms} \\ $$$$\mathrm{algebra}\:\mathrm{and}\:\mathrm{analysis}=\mathrm{K}\:\mathrm{Theory} \\ $$$$\mathrm{k}\:\mathrm{theory}\:\mathrm{is}\:\mathrm{not}\:\mathrm{used}\:\mathrm{so}\:\mathrm{much}\:\mathrm{one}\:\mathrm{if}\:\mathrm{the}\:\mathrm{hardest}\:\mathrm{Topic} \\ $$$$\mathrm{in}\:\mathrm{Maths} \\ $$
Commented by York12 last updated on 08/Aug/23
$${thanks}\:{so}\:{much}\:{sir}\: \\ $$
Commented by witcher3 last updated on 09/Aug/23
$$\mathrm{withe}\:\mathrm{Pleasur}\:\mathrm{God}\:\mathrm{bless}\:\mathrm{You} \\ $$
Commented by York12 last updated on 10/Aug/23
$$ \\ $$❤️