Menu Close

0-lt-x-lt-1-1-1-x-1-2x-1-x-2-4x-3-1-x-4-8x-7-1-x-8-16x-15-1-x-16-evaluate-the-previous-summation-




Question Number 195651 by York12 last updated on 06/Aug/23
0<x<1  (1/(1+x^1 ))+((2x)/(1+x^2 ))+((4x^3 )/(1+x^4 ))+((8x^7 )/(1+x^8 ))+((16x^(15) )/(1+x^(16) ))+....+∞  evaluate the previous summation
0<x<111+x1+2x1+x2+4x31+x4+8x71+x8+16x151+x16+.+evaluatetheprevioussummation
Answered by witcher3 last updated on 06/Aug/23
Σ_(n≥0) ((2^n x^(2^n −1) )/(1+x^2^n  ))=f(x)  ∫_0 ^t f(x)dx=Σ_(n≥0) ln(1+t^2^n  )=ln(Π_(n≥0) (1+t^2^n  ))  1+x=((1−x^2 )/(1−x))  =ln(Π_(n≥0) ((1−t^2^(n+1)  )/(1−t^2^n  )))=lim_(N→∞) ln(Π_0 ^N ((1−t^2^(n+1)  )/(1−t^2^n  )))  =lim_(N→∞) ln(((1−t^2^(N+1)  )/(1−t)))=−ln(1−t)=∫_0 ^t f(x)dx  f(x)=(1/(1−x))
n02nx2n11+x2n=f(x)0tf(x)dx=n0ln(1+t2n)=ln(n0(1+t2n))1+x=1x21x=ln(n01t2n+11t2n)=limlnN(N01t2n+11t2n)=limlnN(1t2N+11t)=ln(1t)=0tf(x)dxf(x)=11x
Commented by York12 last updated on 07/Aug/23
should I get through calculus  or I can skip it and study real analysis
shouldIgetthroughcalculusorIcanskipitandstudyrealanalysis
Commented by witcher3 last updated on 07/Aug/23
in Maths You can′t skip lesson all are usufull  Geometrie related algebra withe analysis  withe number theory  geometrie &algebra Geometric−algebra  number theorie +analysis=modular forms  algebra and analysis=K Theory  k theory is not used so much one if the hardest Topic  in Maths
inMathsYoucantskiplessonallareusufullGeometrierelatedalgebrawitheanalysiswithenumbertheorygeometrie&algebraGeometricalgebranumbertheorie+analysis=modularformsalgebraandanalysis=KTheoryktheoryisnotusedsomuchoneifthehardestTopicinMaths
Commented by York12 last updated on 08/Aug/23
thanks so much sir
thankssomuchsir
Commented by witcher3 last updated on 09/Aug/23
withe Pleasur God bless You
withePleasurGodblessYou
Commented by York12 last updated on 10/Aug/23
  ❤️
❤️

Leave a Reply

Your email address will not be published. Required fields are marked *