Question Number 195628 by mr W last updated on 06/Aug/23
$$\underline{{an}\:{unsolved}\:{old}\:{question}\:#\mathrm{190875}} \\ $$$${a},\:{b},\:{c}\:{are}\:{real}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}=\mathrm{0}. \\ $$$${find}\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{b}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{c}}}=? \\ $$
Commented by Frix last updated on 06/Aug/23
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{give}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value} \\ $$
Commented by mr W last updated on 06/Aug/23
$${but}\:{can}\:{we}\:{express}\:{the}\:{result}\:{in}\:{an} \\ $$$${exact}\:{form}?\:{just}\:{like}\:\mathrm{sin}\:\frac{\pi}{\mathrm{13}},\:{it}\:{is} \\ $$$${an}\:{exact}\:{form},\:{even}\:{when}\:{we}\:{don}'{t} \\ $$$${know}\:{its}\:{exact}\:{value}. \\ $$
Commented by Frix last updated on 06/Aug/23
$$\mathrm{In}\:\mathrm{this}\:\mathrm{case}\:\left(\mathrm{as}\:\mathrm{you}\:\mathrm{certainly}\:\mathrm{know}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{3}\:\mathrm{trigonometric}\:\mathrm{solutions}.\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{simplify}\:\Sigma\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{x}_{{j}} }} \\ $$$$\mathrm{We}'\mathrm{d}\:\mathrm{need}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree}\:\mathrm{factor}\:\mathrm{of} \\ $$$$\frac{\mathrm{1}}{{y}^{\mathrm{9}} }−\frac{\mathrm{7}}{{y}^{\mathrm{6}} }+\frac{\mathrm{4}}{{y}^{\mathrm{3}} }+\mathrm{1}=\mathrm{0}\:\Leftrightarrow\:{y}^{\mathrm{9}} +\mathrm{4}{y}^{\mathrm{6}} −\mathrm{7}{y}^{\mathrm{3}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{with}\:\mathrm{3}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{and}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{that}'\mathrm{s} \\ $$$$\mathrm{possible}. \\ $$
Answered by witcher3 last updated on 06/Aug/23
$$\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}..? \\ $$
Commented by mr W last updated on 06/Aug/23
$${yes}! \\ $$
Answered by mr W last updated on 06/Aug/23
$${a},\:{b},\:{c}\:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}=\mathrm{0}. \\ $$$$\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{3}} +\mathrm{4}\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{7}\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{1}=\mathrm{0} \\ $$$${so}\:\frac{\mathrm{1}}{{a}},\:\frac{\mathrm{1}}{{b}},\:\frac{\mathrm{1}}{{c}}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{3}} +\mathrm{4}{z}^{\mathrm{2}} −\mathrm{7}{z}+\mathrm{1}=\mathrm{0}. \\ $$$${let}\:{p}=\frac{\mathrm{1}}{{a}},{q}=\frac{\mathrm{1}}{{b}},{r}=\frac{\mathrm{1}}{{c}} \\ $$$${p}+{q}+{r}=−\mathrm{4} \\ $$$${pq}+{qr}+{rp}=−\mathrm{7} \\ $$$${pqr}=−\mathrm{1} \\ $$$${say}\:{s}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{b}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{c}}}=\sqrt[{\mathrm{3}}]{{p}}+\sqrt[{\mathrm{3}}]{{q}}+\sqrt[{\mathrm{3}}]{{r}} \\ $$$${s}^{\mathrm{3}} ={p}+{q}+{r}−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}+\mathrm{3}{s}\left(\sqrt[{\mathrm{3}}]{{pq}}+\sqrt[{\mathrm{3}}]{{qr}}+\sqrt[{\mathrm{3}}]{{rp}}\right) \\ $$$$\Rightarrow{s}^{\mathrm{3}} =−\mathrm{1}+\mathrm{3}{st}\:\:\:…\left({i}\right) \\ $$$${with}\:{t}=\sqrt[{\mathrm{3}}]{{pq}}+\sqrt[{\mathrm{3}}]{{qr}}+\sqrt[{\mathrm{3}}]{{rp}} \\ $$$${t}^{\mathrm{3}} ={pq}+{qr}+{rp}−\mathrm{3}\sqrt[{\mathrm{3}}]{\left({pqr}\right)^{\mathrm{2}} }+\mathrm{3}{t}\sqrt[{\mathrm{3}}]{{pqr}}\left(\sqrt[{\mathrm{3}}]{{p}}+\sqrt[{\mathrm{3}}]{{q}}+\sqrt[{\mathrm{3}}]{{r}}\right) \\ $$$$\Rightarrow{t}^{\mathrm{3}} =−\mathrm{10}−\mathrm{3}{ts}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$${s}^{\mathrm{3}} +{t}^{\mathrm{3}} =−\mathrm{11}\:\Rightarrow{t}^{\mathrm{3}} =−\mathrm{11}−{s}^{\mathrm{3}} \\ $$$$\left({i}\right):\: \\ $$$${s}^{\mathrm{3}} +\mathrm{1}=\mathrm{3}{st} \\ $$$$\left({s}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} =\mathrm{27}{s}^{\mathrm{3}} {t}^{\mathrm{3}} \\ $$$$\left({s}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} =\mathrm{27}{s}^{\mathrm{3}} \left(−\mathrm{11}−{s}^{\mathrm{3}} \right) \\ $$$${let}\:{u}={s}^{\mathrm{3}} \\ $$$$\left({u}+\mathrm{1}\right)^{\mathrm{3}} =\mathrm{27}{u}\left(−\mathrm{11}−{u}\right) \\ $$$${u}^{\mathrm{3}} +\mathrm{30}{u}^{\mathrm{2}} +\mathrm{300}{u}+\mathrm{1}=\mathrm{0} \\ $$$${let}\:{u}={v}−\mathrm{10} \\ $$$$\left({v}−\mathrm{10}\right)^{\mathrm{3}} +\mathrm{30}\left({v}−\mathrm{10}\right)^{\mathrm{2}} +\mathrm{300}\left({v}−\mathrm{10}\right)+\mathrm{1}=\mathrm{0} \\ $$$${v}^{\mathrm{3}} −\mathrm{999}=\mathrm{0} \\ $$$$\Rightarrow{v}=\sqrt[{\mathrm{3}}]{\mathrm{999}} \\ $$$$\Rightarrow{s}^{\mathrm{3}} ={u}={v}−\mathrm{10}=\sqrt[{\mathrm{3}}]{\mathrm{999}}−\mathrm{10} \\ $$$$\Rightarrow{s}=\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{\mathrm{999}}−\mathrm{10}} \\ $$$${i}.{e}.\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{b}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{c}}}=−\sqrt[{\mathrm{3}}]{\mathrm{10}−\sqrt[{\mathrm{3}}]{\mathrm{999}}}\:\checkmark \\ $$
Commented by Frix last updated on 06/Aug/23
$$\mathrm{Nice}! \\ $$