Menu Close

Question-195653




Question Number 195653 by mustafazaheen last updated on 06/Aug/23
Answered by MM42 last updated on 06/Aug/23
e−1>1     ⇒lim_(x→ 0^+ )  (e−1)^((√3)/x) =∞  ⇒lim_(x→ 0^− )  (e−1)^((√3)/x) =0  ⇒lim  no  exist
$${e}−\mathrm{1}>\mathrm{1}\:\:\: \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\:\mathrm{0}^{+} } \:\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} =\infty \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\:\mathrm{0}^{−} } \:\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} =\mathrm{0} \\ $$$$\Rightarrow{lim}\:\:{no}\:\:{exist} \\ $$$$ \\ $$
Answered by mr W last updated on 06/Aug/23
e−1>1  lim_(n→+∞) (e−1)^n =+∞  lim_(n→−∞) (e−1)^n =0  lim_(x→0^+ ) (e−1)^((√3)/x) =+∞  lim_(x→0^− ) (e−1)^((√3)/x) =0  ⇒lim_(x→0) (e−1)^((√3)/x)  doesn′t exist!
$${e}−\mathrm{1}>\mathrm{1} \\ $$$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\left({e}−\mathrm{1}\right)^{{n}} =+\infty \\ $$$$\underset{{n}\rightarrow−\infty} {\mathrm{lim}}\left({e}−\mathrm{1}\right)^{{n}} =\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} =+\infty \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} =\mathrm{0} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} \:{doesn}'{t}\:{exist}! \\ $$
Commented by mustafazaheen last updated on 07/Aug/23

Leave a Reply

Your email address will not be published. Required fields are marked *