Menu Close

sequence-of-string-said-to-be-orderly-if-element-index-i-different-to-i-1-for-example-aba-has-orderly-value-2-abab-has-orderly-value-3-abaabb-has-orderly-value-3-if-there-are-7-a-and-13-b-exa




Question Number 195666 by uchihayahia last updated on 07/Aug/23
   sequence of string said to be orderly   if element index i different to i+1   for example   aba has orderly value 2   abab has orderly value 3   abaabb has orderly value 3   if there are 7 a and 13 b   example   aaaaaaabbbbbbbbbbbbb has orderly value 1   what is the mean of its orderly value   for all possible sequences?
$$ \\ $$$$\:{sequence}\:{of}\:{string}\:{said}\:{to}\:{be}\:{orderly} \\ $$$$\:{if}\:{element}\:{index}\:{i}\:{different}\:{to}\:{i}+\mathrm{1} \\ $$$$\:{for}\:{example} \\ $$$$\:{aba}\:{has}\:{orderly}\:{value}\:\mathrm{2} \\ $$$$\:{abab}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{abaabb}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{if}\:{there}\:{are}\:\mathrm{7}\:{a}\:{and}\:\mathrm{13}\:{b} \\ $$$$\:{example} \\ $$$$\:{aaaaaaabbbbbbbbbbbbb}\:{has}\:{orderly}\:{value}\:\mathrm{1} \\ $$$$\:{what}\:{is}\:{the}\:{mean}\:{of}\:{its}\:{orderly}\:{value} \\ $$$$\:{for}\:{all}\:{possible}\:{sequences}? \\ $$$$ \\ $$
Commented by mr W last updated on 09/Aug/23
i got 9.1 in a tough way, see below.  do you also have a solution?
$${i}\:{got}\:\mathrm{9}.\mathrm{1}\:{in}\:{a}\:{tough}\:{way},\:{see}\:{below}. \\ $$$${do}\:{you}\:{also}\:{have}\:{a}\:{solution}? \\ $$
Commented by uchihayahia last updated on 09/Aug/23
i don′t, i tried solving it using python   too much time needed
$${i}\:{don}'{t},\:{i}\:{tried}\:{solving}\:{it}\:{using}\:{python} \\ $$$$\:{too}\:{much}\:{time}\:{needed} \\ $$
Answered by mr W last updated on 09/Aug/23
7 “a” and 13 “b”  n=orderly value  n_(min) =1  n_(max) =14  in following  A means a box containing one or   more letters “a”  B means a box containing one or   more letters “b”    n=1:  A∣B ⇒1 way  B∣A ⇒1 way                 −−−  2  n=2:  A∣B∣A ⇒ 6×1=6 ways  B∣A∣B ⇒ 1×12=12 ways                                      −−− 18  n=3:  A∣B∣A ∣B⇒ 6×12=72 ways  B∣A∣B ∣A⇒ 6×12=72 ways                                         −−− 144  n=4:  A∣B∣A ∣B∣A⇒ 15×12=180 ways  B∣A∣B ∣A∣B⇒ 6×66= 396 ways                                                −−− 576  n=5:  A∣B ∣A∣B∣A∣B⇒ 15×66=990 ways  B∣A∣B ∣A∣B∣A⇒ 15×66=990 ways                                                      −−− 1980  n=6:  A∣B ∣A∣B∣A∣B∣A⇒ 20×66=1320 ways  B∣A∣B ∣A∣B∣A∣B⇒ 15×220=3300 ways                                                   −−− 4620  n=7:  A∣B ∣A∣B∣A∣B∣A∣B⇒ 20×220=4400 ways  B∣A∣B ∣A∣B∣A∣B∣A⇒ 20×220=4400 ways                                                          −−− 8800  n=8:  A∣B ∣A∣B∣A∣B∣A∣B∣A⇒ 15×220=3300 ways  B∣A∣B ∣A∣B∣A∣B∣A∣B⇒ 20×495=9900 ways                                                        −−− 13200  n=9:  A∣B ∣A∣B∣A∣B∣A∣B∣A∣B⇒ 15×495=7425 ways  B ∣A∣B∣A∣B∣A∣B∣A∣B∣A⇒ 15×495=7425 ways                                                        −−− 14850  n=10:  A∣B ∣A∣B∣A∣B∣A∣B∣A∣B∣A⇒ 6×495=2970 ways  B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B⇒ 15×792=11880 ways                                                        −−− 14850  n=11:  A∣B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B⇒ 6×792=4752 ways  B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A⇒ 6×792=4752 ways                                                        −−− 9504  n=12:  A∣B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A⇒ 1×792=792 ways  B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B⇒ 6×924=5544 ways                                                        −−− 6336  n=13:  A∣B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B⇒ 1×924=924 ways  B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A⇒ 1×924=924 ways                                                        −−− 1848  n=14:  B ∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B∣A∣B⇒ 1×792=792 ways                                                        −−− 792    mean=((2×1+18×2+144×3+576×4+1980×5+4620×6+8800×7+13200×8+14850×9+14850×10+9504×11+6336×12+1848×13+792×14)/(2+18+144+576+1980+4620+8800+13200+14850+14850+9504+6336+1848+792))              =((705 432)/(77 520))=9.1 ✓    check:  number of total possibilities   =((20!)/(7!×13!))=77 520 ✓
$$\mathrm{7}\:“{a}''\:{and}\:\mathrm{13}\:“{b}'' \\ $$$${n}={orderly}\:{value} \\ $$$${n}_{{min}} =\mathrm{1} \\ $$$${n}_{{max}} =\mathrm{14} \\ $$$${in}\:{following} \\ $$$${A}\:{means}\:{a}\:{box}\:{containing}\:{one}\:{or}\: \\ $$$${more}\:{letters}\:“{a}'' \\ $$$${B}\:{means}\:{a}\:{box}\:{containing}\:{one}\:{or}\: \\ $$$${more}\:{letters}\:“{b}'' \\ $$$$ \\ $$$${n}=\mathrm{1}: \\ $$$${A}\mid{B}\:\Rightarrow\mathrm{1}\:{way} \\ $$$${B}\mid{A}\:\Rightarrow\mathrm{1}\:{way} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\:\mathrm{2} \\ $$$${n}=\mathrm{2}: \\ $$$${A}\mid{B}\mid{A}\:\Rightarrow\:\mathrm{6}×\mathrm{1}=\mathrm{6}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\Rightarrow\:\mathrm{1}×\mathrm{12}=\mathrm{12}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{18} \\ $$$${n}=\mathrm{3}: \\ $$$${A}\mid{B}\mid{A}\:\mid{B}\Rightarrow\:\mathrm{6}×\mathrm{12}=\mathrm{72}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\mid{A}\Rightarrow\:\mathrm{6}×\mathrm{12}=\mathrm{72}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{144} \\ $$$${n}=\mathrm{4}: \\ $$$${A}\mid{B}\mid{A}\:\mid{B}\mid{A}\Rightarrow\:\mathrm{15}×\mathrm{12}=\mathrm{180}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\mid{A}\mid{B}\Rightarrow\:\mathrm{6}×\mathrm{66}=\:\mathrm{396}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{576} \\ $$$${n}=\mathrm{5}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{15}×\mathrm{66}=\mathrm{990}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{15}×\mathrm{66}=\mathrm{990}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{1980} \\ $$$${n}=\mathrm{6}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{20}×\mathrm{66}=\mathrm{1320}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{15}×\mathrm{220}=\mathrm{3300}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{4620} \\ $$$${n}=\mathrm{7}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{20}×\mathrm{220}=\mathrm{4400}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{20}×\mathrm{220}=\mathrm{4400}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{8800} \\ $$$${n}=\mathrm{8}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{15}×\mathrm{220}=\mathrm{3300}\:{ways} \\ $$$${B}\mid{A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{20}×\mathrm{495}=\mathrm{9900}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{13200} \\ $$$${n}=\mathrm{9}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{15}×\mathrm{495}=\mathrm{7425}\:{ways} \\ $$$${B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{15}×\mathrm{495}=\mathrm{7425}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{14850} \\ $$$${n}=\mathrm{10}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{6}×\mathrm{495}=\mathrm{2970}\:{ways} \\ $$$${B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{15}×\mathrm{792}=\mathrm{11880}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{14850} \\ $$$${n}=\mathrm{11}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{6}×\mathrm{792}=\mathrm{4752}\:{ways} \\ $$$${B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{6}×\mathrm{792}=\mathrm{4752}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{9504} \\ $$$${n}=\mathrm{12}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{1}×\mathrm{792}=\mathrm{792}\:{ways} \\ $$$${B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{6}×\mathrm{924}=\mathrm{5544}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{6336} \\ $$$${n}=\mathrm{13}: \\ $$$${A}\mid{B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{1}×\mathrm{924}=\mathrm{924}\:{ways} \\ $$$${B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\Rightarrow\:\mathrm{1}×\mathrm{924}=\mathrm{924}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{1848} \\ $$$${n}=\mathrm{14}: \\ $$$${B}\:\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\mid{A}\mid{B}\Rightarrow\:\mathrm{1}×\mathrm{792}=\mathrm{792}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−\:\mathrm{792} \\ $$$$ \\ $$$${mean}=\frac{\mathrm{2}×\mathrm{1}+\mathrm{18}×\mathrm{2}+\mathrm{144}×\mathrm{3}+\mathrm{576}×\mathrm{4}+\mathrm{1980}×\mathrm{5}+\mathrm{4620}×\mathrm{6}+\mathrm{8800}×\mathrm{7}+\mathrm{13200}×\mathrm{8}+\mathrm{14850}×\mathrm{9}+\mathrm{14850}×\mathrm{10}+\mathrm{9504}×\mathrm{11}+\mathrm{6336}×\mathrm{12}+\mathrm{1848}×\mathrm{13}+\mathrm{792}×\mathrm{14}}{\mathrm{2}+\mathrm{18}+\mathrm{144}+\mathrm{576}+\mathrm{1980}+\mathrm{4620}+\mathrm{8800}+\mathrm{13200}+\mathrm{14850}+\mathrm{14850}+\mathrm{9504}+\mathrm{6336}+\mathrm{1848}+\mathrm{792}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{705}\:\mathrm{432}}{\mathrm{77}\:\mathrm{520}}=\mathrm{9}.\mathrm{1}\:\checkmark \\ $$$$ \\ $$$${check}: \\ $$$${number}\:{of}\:{total}\:{possibilities}\: \\ $$$$=\frac{\mathrm{20}!}{\mathrm{7}!×\mathrm{13}!}=\mathrm{77}\:\mathrm{520}\:\checkmark \\ $$
Commented by uchihayahia last updated on 09/Aug/23
 thanks you, i′ll do my best to understand your   answer. still studying basic combinatrics
$$\:{thanks}\:{you},\:{i}'{ll}\:{do}\:{my}\:{best}\:{to}\:{understand}\:{your} \\ $$$$\:{answer}.\:{still}\:{studying}\:{basic}\:{combinatrics}\: \\ $$
Commented by mr W last updated on 09/Aug/23
i′ll give some explanation for my  solution.  example:  the orderly value is n=4.   that means there are 4  places where a “a” and a “b” are  next to each other. such a place is  marked as “∣”. we have two cases:  case 1: A∣B∣A ∣B∣A  to distribute 7 “a” in 3 boxes there are  C_(7−1) ^(3−1) =15 ways  to distribute 13 “b” in 2 boxes there are  C_(13−1) ^(2−1) =12 ways  ⇒ totally 15×12=180 ways  case 2: B∣A∣B ∣A∣B  to distribute 7 “a” in 2 boxes there are  C_(7−1) ^(2−1) =6 ways  to distribute 13 “b” in 3 boxes there are  C_(13−1) ^(3−1) =66 ways  ⇒totally  6×66= 396 ways  therefore there are 180+396=576   possibilities for the orderly value 4.
$${i}'{ll}\:{give}\:{some}\:{explanation}\:{for}\:{my} \\ $$$${solution}. \\ $$$${example}:\:\:{the}\:{orderly}\:{value}\:{is}\:{n}=\mathrm{4}.\: \\ $$$${that}\:{means}\:{there}\:{are}\:\mathrm{4} \\ $$$${places}\:{where}\:{a}\:“{a}''\:{and}\:{a}\:“{b}''\:{are} \\ $$$${next}\:{to}\:{each}\:{other}.\:{such}\:{a}\:{place}\:{is} \\ $$$${marked}\:{as}\:“\mid''.\:{we}\:{have}\:{two}\:{cases}: \\ $$$${case}\:\mathrm{1}:\:{A}\mid{B}\mid{A}\:\mid{B}\mid{A} \\ $$$${to}\:{distribute}\:\mathrm{7}\:“{a}''\:{in}\:\mathrm{3}\:{boxes}\:{there}\:{are} \\ $$$${C}_{\mathrm{7}−\mathrm{1}} ^{\mathrm{3}−\mathrm{1}} =\mathrm{15}\:{ways} \\ $$$${to}\:{distribute}\:\mathrm{13}\:“{b}''\:{in}\:\mathrm{2}\:{boxes}\:{there}\:{are} \\ $$$${C}_{\mathrm{13}−\mathrm{1}} ^{\mathrm{2}−\mathrm{1}} =\mathrm{12}\:{ways} \\ $$$$\Rightarrow\:{totally}\:\mathrm{15}×\mathrm{12}=\mathrm{180}\:{ways} \\ $$$${case}\:\mathrm{2}:\:{B}\mid{A}\mid{B}\:\mid{A}\mid{B} \\ $$$${to}\:{distribute}\:\mathrm{7}\:“{a}''\:{in}\:\mathrm{2}\:{boxes}\:{there}\:{are} \\ $$$${C}_{\mathrm{7}−\mathrm{1}} ^{\mathrm{2}−\mathrm{1}} =\mathrm{6}\:{ways} \\ $$$${to}\:{distribute}\:\mathrm{13}\:“{b}''\:{in}\:\mathrm{3}\:{boxes}\:{there}\:{are} \\ $$$${C}_{\mathrm{13}−\mathrm{1}} ^{\mathrm{3}−\mathrm{1}} =\mathrm{66}\:{ways} \\ $$$$\Rightarrow{totally}\:\:\mathrm{6}×\mathrm{66}=\:\mathrm{396}\:{ways} \\ $$$${therefore}\:{there}\:{are}\:\mathrm{180}+\mathrm{396}=\mathrm{576}\: \\ $$$${possibilities}\:{for}\:{the}\:{orderly}\:{value}\:\mathrm{4}. \\ $$
Commented by uchihayahia last updated on 11/Aug/23
 thanks, still lot of work i guess. i asked   my friend and told me 9.1 is the correct   answer
$$\:{thanks},\:{still}\:{lot}\:{of}\:{work}\:{i}\:{guess}.\:{i}\:{asked} \\ $$$$\:{my}\:{friend}\:{and}\:{told}\:{me}\:\mathrm{9}.\mathrm{1}\:{is}\:{the}\:{correct} \\ $$$$\:{answer} \\ $$
Commented by mr W last updated on 11/Aug/23
anyway my answer 9.1 is correct.  can your friend tell us how he solved?
$${anyway}\:{my}\:{answer}\:\mathrm{9}.\mathrm{1}\:{is}\:{correct}. \\ $$$${can}\:{your}\:{friend}\:{tell}\:{us}\:{how}\:{he}\:{solved}? \\ $$
Commented by uchihayahia last updated on 12/Aug/23
 he didn′t tell me, he said the answer   is long and laborous. but the idea is the same
$$\:{he}\:{didn}'{t}\:{tell}\:{me},\:{he}\:{said}\:{the}\:{answer} \\ $$$$\:{is}\:{long}\:{and}\:{laborous}.\:{but}\:{the}\:{idea}\:{is}\:{the}\:{same} \\ $$
Commented by mr W last updated on 12/Aug/23
i also think there is no more simple  way than that of mine.
$${i}\:{also}\:{think}\:{there}\:{is}\:{no}\:{more}\:{simple} \\ $$$${way}\:{than}\:{that}\:{of}\:{mine}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *