prove-that-n-2-B-n-n-2-e-3-e-e-1-3-where-B-n-is-the-n-th-bernouli-s-number- Tinku Tara August 9, 2023 Algebra 0 Comments FacebookTweetPin Question Number 195733 by York12 last updated on 09/Aug/23 provethat∑∞n=2[Bn_(n−2)!]=e(3−e)(e−1)3whereBn_isthen−thbernouli′snumber Answered by witcher3 last updated on 09/Aug/23 ∑n⩾0Bnxnn!=xex−1=f(x)f′(x)=∑n⩾1xn−1(n−1)!Bnf″(x)=∑n⩾2Bnxn−2(n−2)!f′(x)=(ex−1)−xex(ex−1)2f″(x)=−xex(ex−1)2−2ex(ex−1)(ex−1−xex)(ex−1)4=−xe2x+xex−2e2x+2ex+2xe2x(ex−1)3=xe2x+xex−2e2x+2ex(ex−1)3f″(1)=3e−e2(e−1)3=∑n⩾1Bn(n−2)! Commented by York12 last updated on 10/Aug/23 Icannotfindwords,butthankssomuchsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Calculer-1-0-ln-2-t-1-t-2-dt-Next Next post: Question-195742 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.