Menu Close

prove-that-n-2-B-n-n-2-e-3-e-e-1-3-where-B-n-is-the-n-th-bernouli-s-number-




Question Number 195733 by York12 last updated on 09/Aug/23
prove that  Σ_(n=2) ^∞ [(B_n^_  /((n−2)!))]=((e(3−e))/((e−1)^3 ))  where B_n^_   is the n− th bernouli′s number
provethatn=2[Bn_(n2)!]=e(3e)(e1)3whereBn_isthenthbernoulisnumber
Answered by witcher3 last updated on 09/Aug/23
Σ_(n≥0) B_n (x^n /(n!))=(x/(e^x −1))=f(x)  f′(x)=Σ_(n≥1) (x^(n−1) /((n−1)!))B_n   f′′(x)=Σ_(n≥2) B_n (x^(n−2) /((n−2)!))  f′(x)=(((e^x −1)−xe^x )/((e^x −1)^2 ))  f′′(x)=((−xe^x (e^x −1)^2 −2e^x (e^x −1)(e^x −1−xe^x ))/((e^x −1)^4 ))  =((−xe^(2x) +xe^x −2e^(2x) +2e^x +2xe^(2x) )/((e^x −1)^3 ))  =((xe^(2x) +xe^x −2e^(2x) +2e^x )/((e^x −1)^3 ))  f′′(1)=((3e−e^2 )/((e−1)^3 ))=Σ_(n≥1) (B_n /((n−2)!))
n0Bnxnn!=xex1=f(x)f(x)=n1xn1(n1)!Bnf(x)=n2Bnxn2(n2)!f(x)=(ex1)xex(ex1)2f(x)=xex(ex1)22ex(ex1)(ex1xex)(ex1)4=xe2x+xex2e2x+2ex+2xe2x(ex1)3=xe2x+xex2e2x+2ex(ex1)3f(1)=3ee2(e1)3=n1Bn(n2)!
Commented by York12 last updated on 10/Aug/23
I can not find words , but thanks so much  sir
Icannotfindwords,butthankssomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *