Menu Close

hello-x-3-1-x-3-18-x-gt-1-x-5-1-x-5-




Question Number 195765 by SajaRashki last updated on 10/Aug/23
hello      { ((x^3 +(1/x^3 ) = 18)),((x>1)) :}  ⇒   x^5 −(1/x^5 ) = ?
hello{x3+1x3=18x>1x51x5=?
Answered by mr W last updated on 10/Aug/23
x^3 +(1/x^3 )=(x+(1/x))^3 −3(x+(1/x))  let s=x+(1/x) ∈R  s^3 −3s−18=0  (s−3)(s^2 +3s+6)=0  ⇒s=3  (x^3 +(1/x^3 ))(x^2 +(1/x^2 ))=x^5 +(1/x^5 )+x+(1/x)  x^5 +(1/x^5 )=(x^3 +(1/x^3 ))(x^2 +(1/x^2 ))−(x+(1/x))  x^5 +(1/x^5 )=(x^3 +(1/x^3 ))[(x+(1/x))^2 −2]−(x+(1/x))  x^5 +(1/x^5 )=18(s^2 −2)−s  ⇒x^5 +(1/x^5 )=18(3^2 −2)−3=123  (x^5 −(1/x^5 ))^2 =(x^5 +(1/x^5 ))^2 −4  ⇒x^5 −(1/x^5 )=(√(123^2 −4))=55(√5) ✓
x3+1x3=(x+1x)33(x+1x)lets=x+1xRs33s18=0(s3)(s2+3s+6)=0s=3(x3+1x3)(x2+1x2)=x5+1x5+x+1xx5+1x5=(x3+1x3)(x2+1x2)(x+1x)x5+1x5=(x3+1x3)[(x+1x)22](x+1x)x5+1x5=18(s22)sx5+1x5=18(322)3=123(x51x5)2=(x5+1x5)24x51x5=12324=555
Commented by SajaRashki last updated on 10/Aug/23
Mr. W; you are a genius in mathmatics  thank you for nice your solution
Mr.W;youareageniusinmathmaticsthankyouforniceyoursolution
Commented by mr W last updated on 10/Aug/23
i′m not. but thank you anyway!
imnot.butthankyouanyway!
Answered by ajfour last updated on 10/Aug/23
say   x^3 −(1/x^3 )=(x−(1/x))(x^2 +(1/x^2 )+1)         =(√(324−4))=8(√5)    x^5 −(1/x^5 )=Q   =Q=(x−(1/x))(x^4 +(1/x^4 )+x^2 +(1/x^2 )+1)  let   x^2 +(1/x^2 )=t  (Q/(8(√5)))=((t^2 −2+t+1)/(t+1))  x^3 +(1/x^3 )=18=(x+(1/x))(x^2 +(1/x^2 )−1)  324=(t+2)(t−1)^2   ⇒  t=7  (Q/(8(√5)))=((49−2+7+1)/8)  ⇒  Q=x^5 −(1/x^5 )= 55(√5)
sayx31x3=(x1x)(x2+1x2+1)=3244=85x51x5=Q=Q=(x1x)(x4+1x4+x2+1x2+1)letx2+1x2=tQ85=t22+t+1t+1x3+1x3=18=(x+1x)(x2+1x21)324=(t+2)(t1)2t=7Q85=492+7+18Q=x51x5=555
Commented by SajaRashki last updated on 11/Aug/23
thank alot dear mr ajfour
thankalotdearmrajfour

Leave a Reply

Your email address will not be published. Required fields are marked *