Menu Close

3-12-1-3-3-1-3-x-1-3-y-1-3-z-1-3-x-y-z-N-x-y-z-please-help-me-




Question Number 195855 by jabarsing last updated on 11/Aug/23
 { ((3(√(((12))^(1/3) −(3)^(1/3) ))=(x)^(1/3) +(y)^(1/3) −(z)^(1/3) )),((x,y,z ∈ N)) :}  ⇒ x,y,z =?  please help me
$$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}=\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$${please}\:{help}\:{me} \\ $$
Answered by Rasheed.Sindhi last updated on 13/Aug/23
Unsuccessful Try...   { ((3(√(((12))^(1/3) −(3)^(1/3) ))=(x)^(1/3) +(y)^(1/3) −(z)^(1/3) )),((x,y,z ∈ N)) :}  ⇒ x,y,z =?  (3(√(((12))^(1/3) −(3)^(1/3) )))^3 =((x)^(1/3) +(y)^(1/3) −(z)^(1/3) )^3   (a+b−c)^3   =a^3 +b^3 −c^3 +3ab(a+b)−3bc(b−c)−3ac(a−c)−6abc  27(√((((12))^(1/3)  −(3)^(1/3)   )^3 ))            =x+y−z+3((xy))^(1/3)  ((x)^(1/3)  +(y)^(1/3)  )                                 −3((yz))^(1/3)  ((y)^(1/3)  −(z)^(1/3)  )                                 −3((xz))^(1/3)  ((x)^(1/3)  −(z)^(1/3)  )                                −6((xyz))^(1/3)    (a−b)^3 =a^3 −b^3 −3ab(a−b)  LHS:  27(√(12−3−3((36))^(1/3)  (((12))^(1/3)  −(3)^(1/3) )))   =27(√(9−((36))^(1/3)  (((12))^(1/3)  −(3)^(1/3)  )))  =27(√(9−((36))^(1/3)  (3)^(1/3) ((4)^(1/3)  −1 )))   =27(√(9−3(4)^(1/3)  ((4)^(1/3)  −1 )))   =27(√(9−6(2)^(1/3)   −3(4)^(1/3)  ))   (LHS)^2 =729(9−6(2)^(1/3)   −3(4)^(1/3)  )  RHS:           =x+y−z+3((xy))^(1/3)  ((x)^(1/3)  +(y)^(1/3)  )                                 −3((yz))^(1/3)  ((y)^(1/3)  −(z)^(1/3)  )                                 −3((xz))^(1/3)  ((x)^(1/3)  −(z)^(1/3)  )                                −6((xyz))^(1/3)    (RHS)^2            =(x+y−z+3((xy))^(1/3)  ((x)^(1/3)  +(y)^(1/3)  )                                 −3((yz))^(1/3)  ((y)^(1/3)  −(z)^(1/3)  )                                 −3((xz))^(1/3)  ((x)^(1/3)  −(z)^(1/3)  )                                −6((xyz))^(1/3)  )^2      (LHS)^2 =(RHS)^2   Too complicated  .....
$$\mathrm{Unsuccessful}\:\mathrm{Try}… \\ $$$$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}=\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$$\left(\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}\right)^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}−\sqrt[{\mathrm{3}}]{{z}}\right)^{\mathrm{3}} \\ $$$$\left({a}+{b}−{c}\right)^{\mathrm{3}} \\ $$$$={a}^{\mathrm{3}} +{b}^{\mathrm{3}} −{c}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right)−\mathrm{3}{bc}\left({b}−{c}\right)−\mathrm{3}{ac}\left({a}−{c}\right)−\mathrm{6}{abc} \\ $$$$\mathrm{27}\sqrt{\left(\sqrt[{\mathrm{3}}]{\mathrm{12}}\:−\sqrt[{\mathrm{3}}]{\mathrm{3}}\:\:\right)^{\mathrm{3}} }\: \\ $$$$\:\:\:\:\:\:\:\:\:={x}+{y}−{z}+\mathrm{3}\sqrt[{\mathrm{3}}]{{xy}}\:\left(\sqrt[{\mathrm{3}}]{{x}}\:+\sqrt[{\mathrm{3}}]{{y}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{{yz}}\:\left(\sqrt[{\mathrm{3}}]{{y}}\:−\sqrt[{\mathrm{3}}]{{z}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{{xz}}\:\left(\sqrt[{\mathrm{3}}]{{x}}\:−\sqrt[{\mathrm{3}}]{{z}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{6}\sqrt[{\mathrm{3}}]{{xyz}}\: \\ $$$$\left({a}−{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} −{b}^{\mathrm{3}} −\mathrm{3}{ab}\left({a}−{b}\right) \\ $$$${LHS}: \\ $$$$\mathrm{27}\sqrt{\mathrm{12}−\mathrm{3}−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{36}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{12}}\:−\sqrt[{\mathrm{3}}]{\mathrm{3}}\right)}\: \\ $$$$=\mathrm{27}\sqrt{\mathrm{9}−\sqrt[{\mathrm{3}}]{\mathrm{36}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{12}}\:−\sqrt[{\mathrm{3}}]{\mathrm{3}}\:\right)} \\ $$$$=\mathrm{27}\sqrt{\mathrm{9}−\sqrt[{\mathrm{3}}]{\mathrm{36}}\:\sqrt[{\mathrm{3}}]{\mathrm{3}}\left(\sqrt[{\mathrm{3}}]{\mathrm{4}}\:−\mathrm{1}\:\right)}\: \\ $$$$=\mathrm{27}\sqrt{\mathrm{9}−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{4}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{4}}\:−\mathrm{1}\:\right)}\: \\ $$$$=\mathrm{27}\sqrt{\mathrm{9}−\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{2}}\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{4}}\:}\: \\ $$$$\left({LHS}\right)^{\mathrm{2}} =\mathrm{729}\left(\mathrm{9}−\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{2}}\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{4}}\:\right) \\ $$$${RHS}: \\ $$$$\:\:\:\:\:\:\:\:\:={x}+{y}−{z}+\mathrm{3}\sqrt[{\mathrm{3}}]{{xy}}\:\left(\sqrt[{\mathrm{3}}]{{x}}\:+\sqrt[{\mathrm{3}}]{{y}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{{yz}}\:\left(\sqrt[{\mathrm{3}}]{{y}}\:−\sqrt[{\mathrm{3}}]{{z}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{{xz}}\:\left(\sqrt[{\mathrm{3}}]{{x}}\:−\sqrt[{\mathrm{3}}]{{z}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{6}\sqrt[{\mathrm{3}}]{{xyz}}\: \\ $$$$\left({RHS}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left({x}+{y}−{z}+\mathrm{3}\sqrt[{\mathrm{3}}]{{xy}}\:\left(\sqrt[{\mathrm{3}}]{{x}}\:+\sqrt[{\mathrm{3}}]{{y}}\:\right)\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{{yz}}\:\left(\sqrt[{\mathrm{3}}]{{y}}\:−\sqrt[{\mathrm{3}}]{{z}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\sqrt[{\mathrm{3}}]{{xz}}\:\left(\sqrt[{\mathrm{3}}]{{x}}\:−\sqrt[{\mathrm{3}}]{{z}}\:\right) \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{6}\sqrt[{\mathrm{3}}]{{xyz}}\:\right)^{\mathrm{2}} \\ $$$$\: \\ $$$$\left({LHS}\right)^{\mathrm{2}} =\left({RHS}\right)^{\mathrm{2}} \\ $$$${Too}\:{complicated} \\ $$$$….. \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *