Menu Close

a-b-c-gt-0-amp-abc-1-prove-that-1-1-a-b-1-1-b-c-1-1-c-a-1-




Question Number 195820 by York12 last updated on 11/Aug/23
a,b,c>0 &abc=1,prove that  (1/(1+a+b))+(1/(1+b+c))+(1/(1+c+a))≤1
$${a},{b},{c}>\mathrm{0}\:\&{abc}=\mathrm{1},{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}+\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}+\frac{\mathrm{1}}{\mathrm{1}+{c}+{a}}\leqslant\mathrm{1} \\ $$
Answered by CrispyXYZ last updated on 12/Aug/23
let a=x^3 , b=y^3 , c=z^3 , then xyz=1.  x^3 +y^3 −x^2 y−y^2 x=(x−y)^2 (x+y)≥0  ⇒x^3 +y^3 ≥x^2 y+y^2 x  (1/(1+a+b))=(1/(1+x^3 +y^3 ))  ≤(1/(1+x^2 y+y^2 x))  =(1/(xyz+x^2 y+y^2 x))=(1/(xy(x+y+z)))=(z/(x+y+z))  Similarly,  (1/(1+b+c))≤(x/(x+y+z)),  (1/(1+c+a))≤(y/(x+y+z)).  In conclusion,  (1/(1+a+b))+(1/(1+b+c))+(1/(1+a+c))≤((x+y+z)/(x+y+z))=1
$$\mathrm{let}\:{a}={x}^{\mathrm{3}} ,\:{b}={y}^{\mathrm{3}} ,\:{c}={z}^{\mathrm{3}} ,\:\mathrm{then}\:{xyz}=\mathrm{1}. \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} −{x}^{\mathrm{2}} {y}−{y}^{\mathrm{2}} {x}=\left({x}−{y}\right)^{\mathrm{2}} \left({x}+{y}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{3}} +{y}^{\mathrm{3}} \geqslant{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {x} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} +{y}^{\mathrm{3}} } \\ $$$$\leqslant\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {x}} \\ $$$$=\frac{\mathrm{1}}{{xyz}+{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {x}}=\frac{\mathrm{1}}{{xy}\left({x}+{y}+{z}\right)}=\frac{{z}}{{x}+{y}+{z}} \\ $$$$\mathrm{Similarly}, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}\leqslant\frac{{x}}{{x}+{y}+{z}},\:\:\frac{\mathrm{1}}{\mathrm{1}+{c}+{a}}\leqslant\frac{{y}}{{x}+{y}+{z}}. \\ $$$$\mathrm{In}\:\mathrm{conclusion}, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}+\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}+\frac{\mathrm{1}}{\mathrm{1}+{a}+{c}}\leqslant\frac{{x}+{y}+{z}}{{x}+{y}+{z}}=\mathrm{1} \\ $$
Commented by York12 last updated on 13/Aug/23
tbanks
$${tbanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *