Menu Close

find-the-valur-lim-0-x-sinx-x-3-




Question Number 195840 by NANIGOPAL last updated on 11/Aug/23
find the valur    lim_(→0)  ((x−sinx)/x^3 )
findthevalurlim0xsinxx3
Commented by kokeb last updated on 11/Aug/23
find the valur    lim_(→0)  ((x−sinx)/x^3 )=lim_(→0) ((1−cosx)/(2x^2 ))  =lim_(→0) ((sinx)/(4x))=(1/4)lim_(→0) ((sinx)/x)  =(1/4)
findthevalurlim0xsinxx3=lim01cosx2x2=lim0sinx4x=14lim0sinxx=14
Commented by jabarsing last updated on 11/Aug/23
lim_(x→0) ((x−sin x)/x^3 ) =^(LH) lim_(x→0) ((1−cos x)/(3x^2 ))=^(LH) lim_(x→0) ((sin x)/(6x))=  =^(LH) lim_(x→0) ((cos x)/6) =(1/6)
limx0xsinxx3=LHlimx01cosx3x2=LHlimx0sinx6x==LHlimx0cosx6=16
Commented by MM42 last updated on 11/Aug/23
(1/6)
16
Commented by jabarsing last updated on 11/Aug/23
or: lim_(x→0) ((x−sinx)/x^3 )   =^(M.S) lim_(x→0) ((x−(x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+...))/x^3 )=  =lim_(x→0) ((x−x+(x^3 /(3!))−(x^5 /(5!))+(x^7 /(7!))−...)/x^3 )=(1/(3!))−0+0−0+...=(1/6)
or:limx0xsinxx3=M.Slimx0x(xx33!+x55!x77!+)x3==limx0xx+x33!x55!+x77!x3=13!0+00+=16

Leave a Reply

Your email address will not be published. Required fields are marked *