Menu Close

find-the-valur-lim-0-x-sinx-x-3-




Question Number 195840 by NANIGOPAL last updated on 11/Aug/23
find the valur    lim_(→0)  ((x−sinx)/x^3 )
$${find}\:{the}\:{valur} \\ $$$$\:\:{li}\underset{\rightarrow\mathrm{0}} {{m}}\:\frac{{x}−{sinx}}{{x}^{\mathrm{3}} } \\ $$
Commented by kokeb last updated on 11/Aug/23
find the valur    lim_(→0)  ((x−sinx)/x^3 )=lim_(→0) ((1−cosx)/(2x^2 ))  =lim_(→0) ((sinx)/(4x))=(1/4)lim_(→0) ((sinx)/x)  =(1/4)
$${find}\:{the}\:{valur} \\ $$$$\:\:{li}\underset{\rightarrow\mathrm{0}} {{m}}\:\frac{{x}−{sinx}}{{x}^{\mathrm{3}} }={li}\underset{\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{1}−{cosx}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$={li}\underset{\rightarrow\mathrm{0}} {{m}}\frac{{sinx}}{\mathrm{4}{x}}=\frac{\mathrm{1}}{\mathrm{4}}{li}\underset{\rightarrow\mathrm{0}} {{m}}\frac{{sinx}}{{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$
Commented by jabarsing last updated on 11/Aug/23
lim_(x→0) ((x−sin x)/x^3 ) =^(LH) lim_(x→0) ((1−cos x)/(3x^2 ))=^(LH) lim_(x→0) ((sin x)/(6x))=  =^(LH) lim_(x→0) ((cos x)/6) =(1/6)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{3}} }\:\overset{{LH}} {=}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{3}{x}^{\mathrm{2}} }\overset{{LH}} {=}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}}{\mathrm{6}{x}}= \\ $$$$\overset{{LH}} {=}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:{x}}{\mathrm{6}}\:=\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by MM42 last updated on 11/Aug/23
(1/6)
$$\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by jabarsing last updated on 11/Aug/23
or: lim_(x→0) ((x−sinx)/x^3 )   =^(M.S) lim_(x→0) ((x−(x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+...))/x^3 )=  =lim_(x→0) ((x−x+(x^3 /(3!))−(x^5 /(5!))+(x^7 /(7!))−...)/x^3 )=(1/(3!))−0+0−0+...=(1/6)
$${or}:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−{sinx}}{{x}^{\mathrm{3}} }\:\:\:\overset{{M}.{S}} {=}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+…\right)}{{x}^{\mathrm{3}} }= \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\cancel{{x}}−\cancel{{x}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}−\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}+\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}−…}{{x}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{3}!}−\mathrm{0}+\mathrm{0}−\mathrm{0}+…=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *