Menu Close

dy-dx-1-y-2-1-x-2-0-




Question Number 195885 by cortano12 last updated on 12/Aug/23
    (dy/dx) + (√((1−y^2 )/(1−x^2 ))) = 0
$$\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\sqrt{\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:=\:\mathrm{0}\: \\ $$
Answered by mokys last updated on 12/Aug/23
(dy/( (√(1−y^2 )))) + (dx/( (√(1−x^2 )))) = d(0)    sin^(−1) (y)+sin^(−1) (x) = c
$$\frac{{dy}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:+\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\:{d}\left(\mathrm{0}\right) \\ $$$$ \\ $$$${sin}^{−\mathrm{1}} \left({y}\right)+{sin}^{−\mathrm{1}} \left({x}\right)\:=\:{c} \\ $$
Answered by BaliramKumar last updated on 12/Aug/23
x(√(1−y^2 )) + y(√(1−x^2 )) = C
$${x}\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:+\:{y}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:=\:\mathrm{C} \\ $$$$ \\ $$
Commented by mokys last updated on 12/Aug/23
false solution
$${false}\:{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *