Menu Close

Question-195874




Question Number 195874 by Humble last updated on 12/Aug/23
Answered by mr W last updated on 12/Aug/23
x=v_0 sin θ t+((g cos α)/2) t^2   z=v_0 cos θt−((g sin α)/2) t^2   a)  z_(max) =(((v_0 cos θ)^2 )/(2g sin α))=(((4×((√3)/2))^2 )/(2×9.8×sin 45°))=0.87 m  b)  z=v_0 cos θt−((g sin α)/2) t^2 =0  ⇒t=((2v_0 cos θ)/(g sin α))  x_(max) =(v_0 sin θ+((g cos α)/2)×((2v_0 cos θ)/(g sin α)))((2v_0 cos θ)/(g sin α))    =(sin θ+((cos θ)/(tan α)))((2v_0 ^2 cos θ)/(g sin α))    =((1/2)+((√3)/2))((2×4^2 ×(√3)×(√2))/(2×9.8))    =5.46 m
x=v0sinθt+gcosα2t2z=v0cosθtgsinα2t2a)zmax=(v0cosθ)22gsinα=(4×32)22×9.8×sin45°=0.87mb)z=v0cosθtgsinα2t2=0t=2v0cosθgsinαxmax=(v0sinθ+gcosα2×2v0cosθgsinα)2v0cosθgsinα=(sinθ+cosθtanα)2v02cosθgsinα=(12+32)2×42×3×22×9.8=5.46m
Commented by Humble last updated on 12/Aug/23
Great!  Thanks sir.
Great!Thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *