Question Number 195892 by AROUNAMoussa last updated on 12/Aug/23
Answered by mr W last updated on 13/Aug/23
$$\mathrm{1}+\sqrt{\left(\mathrm{4}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{4}−\mathrm{1}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{4}+\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{4}−\mathrm{2}\right)^{\mathrm{2}} }+\mathrm{2} \\ $$$$=\mathrm{7}+\mathrm{4}\sqrt{\mathrm{2}} \\ $$
Commented by AROUNAMoussa last updated on 13/Aug/23
$${Merci}\:{mais}\:{je}\:{n}'{ai}\:{rien}\:{compris},{veillez}\:{donner}\:{des}\:{detailles}\:! \\ $$
Commented by mr W last updated on 13/Aug/23
Commented by mr W last updated on 13/Aug/23
$${length}\:{of}\:{rectangle}\:=\mathrm{1}+{a}+{b}+\mathrm{2} \\ $$$${a}^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{1}\right)^{\mathrm{2}} =\left(\mathrm{4}+\mathrm{1}\right)^{\mathrm{2}} \: \\ $$$$\Rightarrow{a}=\sqrt{\left(\mathrm{4}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{4}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{4} \\ $$$${b}^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{2}\right)^{\mathrm{2}} =\left(\mathrm{4}+\mathrm{2}\right)^{\mathrm{2}} \: \\ $$$$\Rightarrow{b}=\sqrt{\left(\mathrm{4}+\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{4}−\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{4}\sqrt{\mathrm{2}} \\ $$
Commented by AROUNAMoussa last updated on 14/Aug/23
$${Merci}\:{bcp}\:{Mr}\:{W}\:! \\ $$