Menu Close

z-1-z-2-z-3-C-z-1-z-2-z-3-1-Prove-that-z-1-z-2-z-2-z-3-z-3-z-1-z-1-z-2-z-3-R-




Question Number 195872 by CrispyXYZ last updated on 12/Aug/23
z_1 , z_2 , z_3 ∈C.∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1. Prove that  (((z_1 +z_2 )(z_2 +z_3 )(z_3 +z_1 ))/(z_1 z_2 z_3 ))∈R.
$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \in\mathbb{C}.\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\left({z}_{\mathrm{1}} +{z}_{\mathrm{2}} \right)\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}} +{z}_{\mathrm{1}} \right)}{{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}} }\in\mathbb{R}. \\ $$
Answered by AST last updated on 12/Aug/23
=((2z_1 z_2 z_3 +z_1 ^2 z_2 +z_3 ^2 z_1 +z_1 ^2 z_3 +z_2 ^2 z_3 +z_1 z_2 ^2 +z_3 ^2 z_2 )/(z_1 z_2 z_3 ))  =(2+(z_1 /z_3 )+(z_3 /z_2 )+(z_1 /z_2 )+(z_2 /z_1 )+(z_2 /z_3 )+(z_3 /z_1 ))=P  P∈R⇒P−P^(__) =0⇒2−2+((z_1 z_1 ^− −z_3 z_3 ^− =1−1)/(z_1 z_3 ))+...=0   ■
$$=\frac{\mathrm{2}{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}} +{z}_{\mathrm{1}} ^{\mathrm{2}} {z}_{\mathrm{2}} +{z}_{\mathrm{3}} ^{\mathrm{2}} {z}_{\mathrm{1}} +{z}_{\mathrm{1}} ^{\mathrm{2}} {z}_{\mathrm{3}} +{z}_{\mathrm{2}} ^{\mathrm{2}} {z}_{\mathrm{3}} +{z}_{\mathrm{1}} {z}_{\mathrm{2}} ^{\mathrm{2}} +{z}_{\mathrm{3}} ^{\mathrm{2}} {z}_{\mathrm{2}} }{{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}} } \\ $$$$=\left(\mathrm{2}+\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{3}} }+\frac{{z}_{\mathrm{3}} }{{z}_{\mathrm{2}} }+\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }+\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{1}} }+\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{3}} }+\frac{{z}_{\mathrm{3}} }{{z}_{\mathrm{1}} }\right)={P} \\ $$$${P}\in\mathbb{R}\Rightarrow{P}−\overset{\_\_} {{P}}=\mathrm{0}\Rightarrow\mathrm{2}−\mathrm{2}+\frac{{z}_{\mathrm{1}} \overset{−} {{z}}_{\mathrm{1}} −{z}_{\mathrm{3}} \overset{−} {{z}}_{\mathrm{3}} =\mathrm{1}−\mathrm{1}}{{z}_{\mathrm{1}} {z}_{\mathrm{3}} }+…=\mathrm{0}\:\:\:\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *