Menu Close

m-1-n-1-1-n-1-m-2-n-mn-2-




Question Number 195952 by mnjuly1970 last updated on 13/Aug/23
      Ω = Σ_(m=1) ^∞ Σ_(n=1) ^∞ (((−1)^( n+1) )/(m^2 n + mn^( 2) ))  = ?                 −−−−−
Ω=m=1n=1(1)n+1m2n+mn2=?
Answered by witcher3 last updated on 14/Aug/23
(1/(mn(n+m)))=(1/m^2 )((1/n)−(1/(n+m)))  A=Σ_(m≥1) (1/m^2 )Σ_(n≥1) (((−1)^(n−1) )/n)=((π^2 ln(2))/6)  B=Σ_(m≥1) (1/m^2 )Σ_(n≥1) (((−1)^(n−1) )/(n+m))  =Σ_(m≥1) (1/m^2 )Σ_(n≥1) (−1)^(n−1) ∫_0 ^1 x^(n+m−1) dx  =∫_0 ^1 Σ(x^m /m^2 )Σ_(n≥1) (−x)^(n−1) dx  =∫_0 ^1 Li_2 (x).(dx/(1+x))  =∫_0 ^1 ((Li_2 (x))/(1+x))=ln(2)ζ(2)+∫_0 ^1 ((ln(1−x)ln(1+x))/x)dx  =ln(2)ζ(2)+(1/4)∫_0 ^1 (((ln(1−x^2 ))^2 −ln^2 (((1−x)/(1+x))))/x)dx_(=I)   I=(1/8)∫_0 ^1 ((ln^2 (1−t))/t)dt−(1/4)∫_0 ^1 ((2ln^2 (t))/((1−t^2 )))+ζ(2)ln(2)  =(1/8)∫_0 ^1 ((ln^2 (t))/(1−t))dt−(1/2)∫_0 ^1 ((ln^2 (t))/(1−t^2 ))dt+ζ(2)ln(2)  ∫_0 ^1 t^n ln^2 (t)dt=((Γ(3))/((n+1)^3 ))  =(2/(8(1+n)^3 ))−Σ_(n≥0) (1/((1+2n)^3 ))+((π^2 ln(2))/6)  =(1/4)ζ(3)−((7/8)ζ(3))=−(5/8)ζ(3)  Ω=A−B=(π^2 /6)ln(2)−((π^2 /6)ln(2)−(5/8)ζ(3))  Σ_(n,m≥1) (((−1)^(n−1) )/(nm^2 +mn^2 ))=(5/8)ζ(3)
1mn(n+m)=1m2(1n1n+m)A=m11m2n1(1)n1n=π2ln(2)6B=m11m2n1(1)n1n+m=m11m2n1(1)n101xn+m1dx=01Σxmm2n1(x)n1dx=01Li2(x).dx1+x=01Li2(x)1+x=ln(2)ζ(2)+01ln(1x)ln(1+x)xdx=ln(2)ζ(2)+1401(ln(1x2))2ln2(1x1+x)xdx=II=1801ln2(1t)tdt14012ln2(t)(1t2)+ζ(2)ln(2)=1801ln2(t)1tdt1201ln2(t)1t2dt+ζ(2)ln(2)01tnln2(t)dt=Γ(3)(n+1)3=28(1+n)3n01(1+2n)3+π2ln(2)6=14ζ(3)(78ζ(3))=58ζ(3)Ω=AB=π26ln(2)(π26ln(2)58ζ(3))n,m1(1)n1nm2+mn2=58ζ(3)
Answered by qaz last updated on 14/Aug/23
Ω=Σ_(m,n=1) ^∞ (((−1)^(n+1) )/(nm(n+m)))=Σ_(m,n=1) ^∞ (((−1)^(n+1) )/(nm))∫_0 ^1 x^(n+m−1) dx  =−∫_0 ^1 ((ln(1+x)ln(1−x))/x)dx=(5/8)ζ(3)
Ω=m,n=1(1)n+1nm(n+m)=m,n=1(1)n+1nm01xn+m1dx=01ln(1+x)ln(1x)xdx=58ζ(3)

Leave a Reply

Your email address will not be published. Required fields are marked *