m-1-n-1-1-n-1-m-2-n-mn-2- Tinku Tara August 13, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 195952 by mnjuly1970 last updated on 13/Aug/23 Ω=∑∞m=1∑∞n=1(−1)n+1m2n+mn2=?−−−−− Answered by witcher3 last updated on 14/Aug/23 1mn(n+m)=1m2(1n−1n+m)A=∑m⩾11m2∑n⩾1(−1)n−1n=π2ln(2)6B=∑m⩾11m2∑n⩾1(−1)n−1n+m=∑m⩾11m2∑n⩾1(−1)n−1∫01xn+m−1dx=∫01Σxmm2∑n⩾1(−x)n−1dx=∫01Li2(x).dx1+x=∫01Li2(x)1+x=ln(2)ζ(2)+∫01ln(1−x)ln(1+x)xdx=ln(2)ζ(2)+14∫01(ln(1−x2))2−ln2(1−x1+x)xdx=II=18∫01ln2(1−t)tdt−14∫012ln2(t)(1−t2)+ζ(2)ln(2)=18∫01ln2(t)1−tdt−12∫01ln2(t)1−t2dt+ζ(2)ln(2)∫01tnln2(t)dt=Γ(3)(n+1)3=28(1+n)3−∑n⩾01(1+2n)3+π2ln(2)6=14ζ(3)−(78ζ(3))=−58ζ(3)Ω=A−B=π26ln(2)−(π26ln(2)−58ζ(3))∑n,m⩾1(−1)n−1nm2+mn2=58ζ(3) Answered by qaz last updated on 14/Aug/23 Ω=∑∞m,n=1(−1)n+1nm(n+m)=∑∞m,n=1(−1)n+1nm∫01xn+m−1dx=−∫01ln(1+x)ln(1−x)xdx=58ζ(3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-195954Next Next post: Question-195931 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.