Menu Close

quel-est-la-transformer-de-Fourier-de-la-fonction-suivante-f-x-e-x-2-2-Find-the-Fourier-transform-of-the-following-fonction-




Question Number 196013 by pticantor last updated on 15/Aug/23
quel est la transformer de Fourier de la fonction  suivante:  f(x)=e^(−(x^2 /2))   Find the Fourier transform of the   following fonction.
quelestlatransformerdeFourierdelafonctionsuivante:f(x)=\boldsymbole\boldsymbolx22\boldsymbolFindtheFouriertransformofthefollowingfonction.
Answered by witcher3 last updated on 16/Aug/23
∫_(−∞) ^∞ e^(−ixt) e^(−(x^2 /2)) dx  =∫_(−∞) ^∞ e^(−(1/2)(x^2 +2ixt)) dx  =∫_(−∞) ^∞ e^(−(1/2)(x+it)^2 −(t^2 /2)) dx  =e^(−(t^2 /2)) ∫_(−∞) ^∞ e^(−(1/2)(x+it)^2 ) dx  e^(−(t^2 /2)) ∫_(−∞+it) ^(∞+it) e^(−(1/2)y^2 ) dy  D=]−R,R[∪[R,R+it]∪[R+it,−R+it]∪[−R+it,−R]  ∫_D e^(−(1/2)y^2 ) dy=0  lim_(R→∞) ∣∫_(+_− R) ^(+_− R+it) e^(−(y^2 /2)) dy∣≤lim_(R→∞) ∣te^(−(1/2)(R^2 +t^2 )) ∣=0  ⇒∫_(−∞+it) ^(∞+it) e^(−(y^2 /2)) dy=∫_(−∞) ^∞ e^(−(y^2 /2)) =  2∫_0 ^∞ e^(−(y^2 /2)) dy=(√2)∫_0 ^∞ e^(−x) .x^(−(1/2)) dx  =(√2).Γ((1/2))=(√(2π))  F(e^(−(x^2 /2)) )=(√(2π))e^(−(t^2 /2)) .
eixtex22dx=e12(x2+2ixt)dx=e12(x+it)2t22dx=et22e12(x+it)2dxet22+it+ite12y2dyD=]R,R[[R,R+it][R+it,R+it][R+it,R]De12y2dy=0limR+R+R+itey22dy∣⩽limRte12(R2+t2)∣=0+it+itey22dy=ey22=20ey22dy=20ex.x12dx=2.Γ(12)=2πF(ex22)=2πet22.
Commented by witcher3 last updated on 16/Aug/23
no −(x^2 /2)−ixt=−(1/2)(x^2 +2ixt)
nox22ixt=12(x2+2ixt)
Commented by pticantor last updated on 16/Aug/23
in the 2nd line you make some mistake look well
inthe2ndlineyoumakesomemistakelookwell
Commented by pticantor last updated on 16/Aug/23
the fourier tranformation formule is:  F(f)(t)=∫_(−∞) ^(+∞) e^(−2πixt) f(x)dx !!!
thefouriertranformationformuleis:F(f)(t)=+e2πixtf(x)dx!!!
Commented by witcher3 last updated on 17/Aug/23
Ah yes forget the formula   i thougth it e^(−ixt  ) sorry
Ahyesforgettheformulaithougthiteixtsorry

Leave a Reply

Your email address will not be published. Required fields are marked *