Question Number 196013 by pticantor last updated on 15/Aug/23

Answered by witcher3 last updated on 16/Aug/23
![∫_(−∞) ^∞ e^(−ixt) e^(−(x^2 /2)) dx =∫_(−∞) ^∞ e^(−(1/2)(x^2 +2ixt)) dx =∫_(−∞) ^∞ e^(−(1/2)(x+it)^2 −(t^2 /2)) dx =e^(−(t^2 /2)) ∫_(−∞) ^∞ e^(−(1/2)(x+it)^2 ) dx e^(−(t^2 /2)) ∫_(−∞+it) ^(∞+it) e^(−(1/2)y^2 ) dy D=]−R,R[∪[R,R+it]∪[R+it,−R+it]∪[−R+it,−R] ∫_D e^(−(1/2)y^2 ) dy=0 lim_(R→∞) ∣∫_(+_− R) ^(+_− R+it) e^(−(y^2 /2)) dy∣≤lim_(R→∞) ∣te^(−(1/2)(R^2 +t^2 )) ∣=0 ⇒∫_(−∞+it) ^(∞+it) e^(−(y^2 /2)) dy=∫_(−∞) ^∞ e^(−(y^2 /2)) = 2∫_0 ^∞ e^(−(y^2 /2)) dy=(√2)∫_0 ^∞ e^(−x) .x^(−(1/2)) dx =(√2).Γ((1/2))=(√(2π)) F(e^(−(x^2 /2)) )=(√(2π))e^(−(t^2 /2)) .](https://www.tinkutara.com/question/Q196019.png)
Commented by witcher3 last updated on 16/Aug/23

Commented by pticantor last updated on 16/Aug/23

Commented by pticantor last updated on 16/Aug/23

Commented by witcher3 last updated on 17/Aug/23
