Menu Close

Question-195996




Question Number 195996 by sonukgindia last updated on 15/Aug/23
Answered by Rasheed.Sindhi last updated on 15/Aug/23
Let radius of blue quarter=r  and of green=R  R=r+1  Diagonal=R+r  (R+r)^2 =(R+1)^2 +(r+1)^2   R^2 +r^2 +2Rr=R^2 +1+2R+r^2 +1+2r  2Rr=2+2R+2r  Rr=1+R+r  Rr=R+R  r=2  R=r+1=2+1=3  Perimeter=2( (r+1)+(R+1) )       =2(R+r+2)       =2(3+2+2)=14✓
$${Let}\:{radius}\:{of}\:{blue}\:{quarter}={r} \\ $$$${and}\:{of}\:{green}={R} \\ $$$${R}={r}+\mathrm{1} \\ $$$${Diagonal}={R}+{r} \\ $$$$\left({R}+{r}\right)^{\mathrm{2}} =\left({R}+\mathrm{1}\right)^{\mathrm{2}} +\left({r}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{Rr}={R}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{R}+{r}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{r} \\ $$$$\mathrm{2}{Rr}=\mathrm{2}+\mathrm{2}{R}+\mathrm{2}{r} \\ $$$${Rr}=\mathrm{1}+{R}+{r} \\ $$$${Rr}={R}+{R} \\ $$$${r}=\mathrm{2} \\ $$$${R}={r}+\mathrm{1}=\mathrm{2}+\mathrm{1}=\mathrm{3} \\ $$$${Perimeter}=\mathrm{2}\left(\:\left({r}+\mathrm{1}\right)+\left({R}+\mathrm{1}\right)\:\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\left({R}+{r}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\left(\mathrm{3}+\mathrm{2}+\mathrm{2}\right)=\mathrm{14}\checkmark \\ $$
Answered by cherokeesay last updated on 15/Aug/23

Leave a Reply

Your email address will not be published. Required fields are marked *