Menu Close

lim-x-0-x-n-1-1-n-x-1-evalute-




Question Number 196024 by York12 last updated on 16/Aug/23
lim_(x→0^+ ) [xΣ_(n=1) ^∞ ((1/n^(x+1) ))]=λ , evalute λ
limx0+[xn=1(1nx+1)]=λ,evaluteλ
Answered by mr W last updated on 16/Aug/23
when x→0^+   (1/n^2 )<(1/n^(x+1) )<(1/n)  Σ_(n=1) ^∞ (1/n^2 )<Σ_(n=1) ^∞ (1/n^(x+1) )<Σ_(n=1) ^∞ (1/n)  let Σ_(n=1) ^∞ (1/n^(x+1) )=A  (π^2 /6)<A<∞  λ=lim_(x→0) (xΣ_(n=1) ^∞ (1/n^(x+1) ))=lim_(x→0) (xA)=0
whenx0+1n2<1nx+1<1nn=11n2<n=11nx+1<n=11nletn=11nx+1=Aπ26<A<λ=limx0(xn=11nx+1)=limx0(xA)=0
Commented by York12 last updated on 17/Aug/23
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *