Menu Close

a-b-c-gt-0-Find-the-min-value-of-cyc-a-b-a-b-c-




Question Number 196049 by CrispyXYZ last updated on 17/Aug/23
a, b, c > 0. Find the min value of  Σ_(cyc)  (√((a+b)/(a+b+c))) .
a,b,c>0.Findtheminvalueofcyca+ba+b+c.
Commented by Frix last updated on 17/Aug/23
b=pa∧c=qa  Σ=(((√(p+1))+(√(p+q))+(√(q+1)))/( (√(p+q+1))))  Σ=2; q=(1/p)∧p→∞  Σ=(√6); p=q=1  ⇒  2<Σ≤(√6)
b=pac=qaΣ=p+1+p+q+q+1p+q+1Σ=2;q=1ppΣ=6;p=q=12<Σ6
Answered by mr W last updated on 17/Aug/23
S=(((√(a+b))+(√(b+c))+(√(c+a)))/( (√(a+b+c))))  =(((√2)((√(a+b))+(√(b+c))+(√(c+a))))/( (√(2(a+b+c)))))  =(((√2)((√(a+b))+(√(b+c))+(√(c+a))))/( (√((a+b)+(b+c)+(c+a)))))  =(((√2)(x+y+z))/( (√(x^2 +y^2 +z^2 )))) (with x=(√(a+b))>0...)  =(((√6)(1×x+1×y+1×z))/( (√3)×(√(x^2 +y^2 +z^2 ))))  =(√6) cos θ  θ=angle between vectors (1,1,1) and (x,y,z)  0≤θ<cos^(−1) (√(2/3))  ⇒2<S≤(√6)  mininum doesn′t exist.
S=a+b+b+c+c+aa+b+c=2(a+b+b+c+c+a)2(a+b+c)=2(a+b+b+c+c+a)(a+b)+(b+c)+(c+a)=2(x+y+z)x2+y2+z2(withx=a+b>0)=6(1×x+1×y+1×z)3×x2+y2+z2=6cosθθ=anglebetweenvectors(1,1,1)and(x,y,z)0θ<cos1232<S6mininumdoesntexist.
Commented by mr W last updated on 18/Aug/23

Leave a Reply

Your email address will not be published. Required fields are marked *