Menu Close

Answer-to-the-question-196008-k-1-n-tan-2-kpi-2n-1-n-2n-1-Ans-according-de-moivre-sin-2n-1-2n-1-1-cos-2n-sin-2n-1-3-cos-2n-2-sin-3-




Question Number 196086 by MM42 last updated on 17/Aug/23
Answer to the question “196008”  Σ_(k=1) ^n tan^2 (((kπ)/(2n+1)))=n(2n+1)  Ans)  according  “de moivre”  sin(2n+1)α= (((2n+1)),((      1)) )(cosα)^(2n) sinα− (((2n+1)),((     3)) )(cosα)^(2n−2) (sinα)^3 +....  =(cosα)^(2n) (sinα)[ (((2n+1)),((      1)) )− (((2n+1)),((     3)) ) tan^2 α+...]  for  “α_k =((kπ)/(2n+1))     ;  1≤k≤n ⇒sin(2n+1)α_k =0  ⇒∀  1≤k≤n→  (((2n+1)),((     1)) )− (((2n+1)),((      3)) ) tan^2 α_k +...=0  therefore  “ x_k =tan^2 α_k  ” thr roots of  the equation are blowe  x^n − (((2n+1)),((2n−1)) ) x^n + (((2n+1)),((2n−3)) )x^(n−1) −...=0  the sume of the roots of the equation is “ s= (((2n+1)),((2n−1)) ) ”  ⇒s=Σ_(k=1) ^n  tan^2 (((kπ)/(2n+1)))=n(2n+1)✓  the proof of the seconf part is done similarly
$${Answer}\:{to}\:{the}\:{question}\:“\mathrm{196008}'' \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{tan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={n}\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$$\left.{Ans}\right) \\ $$$${according}\:\:“{de}\:{moivre}'' \\ $$$${sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\alpha=\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\left({cos}\alpha\right)^{\mathrm{2}{n}} {sin}\alpha−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix}\left({cos}\alpha\right)^{\mathrm{2}{n}−\mathrm{2}} \left({sin}\alpha\right)^{\mathrm{3}} +…. \\ $$$$=\left({cos}\alpha\right)^{\mathrm{2}{n}} \left({sin}\alpha\right)\left[\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:{tan}^{\mathrm{2}} \alpha+…\right] \\ $$$${for}\:\:“\alpha_{{k}} =\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\:\:\:\:\:;\:\:\mathrm{1}\leqslant{k}\leqslant{n}\:\Rightarrow{sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\alpha_{{k}} =\mathrm{0} \\ $$$$\Rightarrow\forall\:\:\mathrm{1}\leqslant{k}\leqslant{n}\rightarrow\:\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{1}}\end{pmatrix}−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:{tan}^{\mathrm{2}} \alpha_{{k}} +…=\mathrm{0} \\ $$$${therefore}\:\:“\:{x}_{{k}} ={tan}^{\mathrm{2}} \alpha_{{k}} \:''\:{thr}\:{roots}\:{of}\:\:{the}\:{equation}\:{are}\:{blowe} \\ $$$${x}^{{n}} −\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{1}}\end{pmatrix}\:{x}^{{n}} +\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{3}}\end{pmatrix}{x}^{{n}−\mathrm{1}} −…=\mathrm{0} \\ $$$${the}\:{sume}\:{of}\:{the}\:{roots}\:{of}\:{the}\:{equation}\:{is}\:“\:{s}=\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{1}}\end{pmatrix}\:'' \\ $$$$\Rightarrow{s}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:{tan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={n}\left(\mathrm{2}{n}+\mathrm{1}\right)\checkmark \\ $$$${the}\:{proof}\:{of}\:{the}\:{seconf}\:{part}\:{is}\:{done}\:{similarly} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *