Question Number 196053 by mathlove last updated on 17/Aug/23
$${faind}\:{n}\:{terme} \\ $$$$\mathrm{4},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{9}},−\mathrm{2},…… \\ $$
Answered by Frix last updated on 17/Aug/23
$$\frac{\mathrm{16}}{\mathrm{4}},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{9}},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{14}},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{19}},… \\ $$$$\frac{\mathrm{16}}{\mathrm{4}},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{9}},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{16}},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{25}},… \\ $$$$\mathrm{I}\:\mathrm{can}\:\mathrm{find}\:\mathrm{42}\:\mathrm{answers}\:\mathrm{per}\:\mathrm{minute}… \\ $$
Commented by mathlove last updated on 17/Aug/23
$${solve}\:{it}\:{n}\:{term} \\ $$
Commented by Frix last updated on 18/Aug/23
$$\mathrm{2}\:\mathrm{possible}\:\mathrm{solutions}\:\mathrm{out}\:\mathrm{of}\:\left(\mathrm{1zillion}\right)^{\mathrm{1zillion}} \\ $$$${a}_{{n}} =−\frac{\mathrm{2}}{\mathrm{9}}\left(\mathrm{13}{n}^{\mathrm{3}} −\mathrm{100}{n}^{\mathrm{2}} +\mathrm{236}{n}−\mathrm{167}\right) \\ $$$${b}_{{n}} =−\frac{\mathrm{32}{n}^{\mathrm{3}} }{\mathrm{479}{n}^{\mathrm{3}} −\mathrm{3249}{n}^{\mathrm{2}} +\mathrm{6530}{n}−\mathrm{3768}} \\ $$
Commented by Frix last updated on 18/Aug/23
$$…\mathrm{2}\:\mathrm{more} \\ $$$${c}_{{n}} =\begin{cases}{\frac{\mathrm{64}}{\left({n}+\mathrm{3}\right)^{\mathrm{2}} };\:{n}=\mathrm{2}{k}−\mathrm{1}}\\{−\mathrm{2};\:{n}=\mathrm{2}{k}}\end{cases};\:{k}\in\mathbb{N}^{\bigstar} \\ $$$${d}_{{n}} =\begin{cases}{\frac{\mathrm{32}}{\mathrm{5}{n}+\mathrm{3}};\:{n}=\mathrm{2}{k}−\mathrm{1}}\\{−\mathrm{2};\:{n}=\mathrm{2}{k}}\end{cases};\:{k}\in\mathbb{N}^{\bigstar} \\ $$
Commented by Frix last updated on 18/Aug/23
$$… \\ $$$$\mathcal{F}_{{n}} =\mathcal{F}_{{n}−\mathrm{2}} +\mathcal{F}_{{n}−\mathrm{1}} ;\:\mathcal{F}_{\mathrm{1}} =\mathcal{F}_{\mathrm{2}} =\mathrm{1} \\ $$$${e}_{{n}} =\begin{cases}{\frac{\mathrm{64}}{\left({n}+\mathrm{3}\right)^{\mathrm{2}} };\:{n}=\mathrm{2}{k}−\mathrm{1}}\\{−\mathrm{2}\mathcal{F}_{\frac{{n}}{\mathrm{2}}} ;\:{n}=\mathrm{2}{k}}\end{cases};\:{k}\in\mathbb{N}^{\bigstar} \\ $$$${f}_{{n}} =\begin{cases}{\frac{\mathrm{32}}{\mathrm{5}{n}+\mathrm{3}};\:{n}=\mathrm{2}{k}−\mathrm{1}}\\{−\mathrm{2}\mathcal{F}_{\frac{{n}}{\mathrm{2}}} ;\:{n}=\mathrm{2}{k}}\end{cases};\:{k}\in\mathbb{N}^{\bigstar} \\ $$
Commented by mathlove last updated on 18/Aug/23
$${thanks} \\ $$