Menu Close

help-please-lim-x-4-cos-4-x-tan-x-1-sin-4-x-




Question Number 196107 by maths_plus last updated on 18/Aug/23
  help, please !  lim_(x β†’ (𝛑/4))  ((cos((𝛑/4) βˆ’x)βˆ’tan x)/(1βˆ’sin((𝛑/4)+x))) = ???
$$ \\ $$$$\mathrm{help},\:\mathrm{please}\:! \\ $$$$\underset{{x}\:\rightarrow\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} {{lim}}\:\frac{{cos}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}\:βˆ’{x}\right)βˆ’{tan}\:{x}}{\mathrm{1}βˆ’{sin}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}+{x}\right)}\:=\:???\: \\ $$
Answered by MM42 last updated on 21/Aug/23
hopβ†’lim_(xβ†’(Ο€/4))  ((sin((Ο€/4)βˆ’x)βˆ’(1+tan^2 x))/(βˆ’cos((Ο€/4)+x)))  =((βˆ’2)/0) { ((xβ†’(Ο€^+ /4)      =+∞)),((xβ†’(Ο€^βˆ’ /4)      =βˆ’βˆž)) :}  β‡’ limit  not  exist
$${hop}\rightarrow{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\frac{{sin}\left(\frac{\pi}{\mathrm{4}}βˆ’{x}\right)βˆ’\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)}{βˆ’{cos}\left(\frac{\pi}{\mathrm{4}}+{x}\right)} \\ $$$$=\frac{βˆ’\mathrm{2}}{\mathrm{0}}\begin{cases}{{x}\rightarrow\frac{\pi^{+} }{\mathrm{4}}\:\:\:\:\:\:=+\infty}\\{{x}\rightarrow\frac{\pi^{βˆ’} }{\mathrm{4}}\:\:\:\:\:\:=βˆ’\infty}\end{cases} \\ $$$$\Rightarrow\:{limit}\:\:{not}\:\:{exist} \\ $$$$ \\ $$
Commented by maths_plus last updated on 18/Aug/23
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *