Menu Close

a-b-c-d-4-prove-that-a-a-3-8-b-b-3-8-c-c-3-8-d-d-3-8-4-9-




Question Number 196198 by liuxinnan last updated on 19/Aug/23
a+b+c+d=4  prove that:  (a/(a^3 +8))+(b/(b^3 +8))+(c/(c^3 +8))+(d/(d^3 +8))≤(4/9)
$${a}+{b}+{c}+{d}=\mathrm{4} \\ $$$${prove}\:{that}: \\ $$$$\frac{{a}}{{a}^{\mathrm{3}} +\mathrm{8}}+\frac{{b}}{{b}^{\mathrm{3}} +\mathrm{8}}+\frac{{c}}{{c}^{\mathrm{3}} +\mathrm{8}}+\frac{{d}}{{d}^{\mathrm{3}} +\mathrm{8}}\leq\frac{\mathrm{4}}{\mathrm{9}} \\ $$
Answered by AST last updated on 19/Aug/23
a^3 +8=a^3 +1+1+1+1+1+1+1+1≥9(a)^(1/3)   ⇒Σ(a/(a^3 +8))≤(1/9)(Σa^(2/3) )≤(1/9)(8×((a+b+c+d)/4))^(2/3) =(4/9)
$${a}^{\mathrm{3}} +\mathrm{8}={a}^{\mathrm{3}} +\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}\geqslant\mathrm{9}\sqrt[{\mathrm{3}}]{{a}} \\ $$$$\Rightarrow\Sigma\frac{{a}}{{a}^{\mathrm{3}} +\mathrm{8}}\leqslant\frac{\mathrm{1}}{\mathrm{9}}\left(\Sigma{a}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)\leqslant\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{8}×\frac{{a}+{b}+{c}+{d}}{\mathrm{4}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} =\frac{\mathrm{4}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *