Menu Close

for-any-a-b-1-1-calculate-arccos-a-arcsin-b-arcsin-a-arcsin-b-arccos-a-arccos-b-




Question Number 196166 by pticantor last updated on 19/Aug/23
for any a,b∈[−1,1]  calculate:   arccos(a)+arcsin(b)=?  arcsin(a)+arcsin(b)=?  arccos(a)+arccos(b)=?
foranya,b[1,1]calculate:arccos(a)+arcsin(b)=?arcsin(a)+arcsin(b)=?arccos(a)+arccos(b)=?
Commented by pticantor last updated on 19/Aug/23
i make some unforgotable mistake! please
imakesomeunforgotablemistake!please
Answered by MM42 last updated on 19/Aug/23
1)cos^(−1) a=x⇒a=cosx⇒sinx=(√(1−a^2 ))  sin^(−1) b=y⇒b=siny⇒cosy=(√(1−b^2 ))  A=x+y⇒sinA=sinxcosy+sinycosx  ⇒sinA=(√(1−a^2 ))(√(1−b^2 ))+ab  ⇒A=sin^(−1) ((√((1−a^2 )(1−b^2 )))+ab)    2)sin^(−1) a=x⇒a=sinx⇒cosx=(√(1−a^2 ))  sin^(−1) b=y⇒b=siny⇒cosx=(√(1−b^2 ))  A=x+y⇒sinA=sinxcosy+sinycosx  ⇒sinA=a(√(1−b^2 ))+b(√(1−a^2 ))  ⇒A=sin^(−1) (a(√(1−b^2 ))+b(√(1−a^2 )))    3)cos^(−1) a=x⇒a=cosx⇒sinx=(√(1−a^2 ))  cos^(−1) b=y⇒b=cosy⇒siny=(√(1−b^2 ))  A=x+y⇒cosA=cosxcosy−sinxsiny  cosA=ab−(√(1−a^2 ))(√(1−b^2 ))  ⇒A=cos^(−1) (ab−(√((1−a^2 )(1−b^2 ) )))
1)cos1a=xa=cosxsinx=1a2sin1b=yb=sinycosy=1b2A=x+ysinA=sinxcosy+sinycosxsinA=1a21b2+abA=sin1((1a2)(1b2)+ab)2)sin1a=xa=sinxcosx=1a2sin1b=yb=sinycosx=1b2A=x+ysinA=sinxcosy+sinycosxsinA=a1b2+b1a2A=sin1(a1b2+b1a2)3)cos1a=xa=cosxsinx=1a2cos1b=yb=cosysiny=1b2A=x+ycosA=cosxcosysinxsinycosA=ab1a21b2A=cos1(ab(1a2)(1b2))
Commented by pticantor last updated on 20/Aug/23
thank you too much sir
thankyoutoomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *