Menu Close

Question-196185




Question Number 196185 by cortano12 last updated on 19/Aug/23
$$\:\:\:\underbrace{\:} \\ $$
Commented by AST last updated on 19/Aug/23
When x=y=z ∧ a=b=c;((ab+bc+ca)/(bc))=3  When x=−1,y=1,z=1; ((ab+bc+ca)/(bc))=((a(b+c))/(bc))+1  can get multiple values since a,b,c can vary.
$${When}\:{x}={y}={z}\:\wedge\:{a}={b}={c};\frac{{ab}+{bc}+{ca}}{{bc}}=\mathrm{3} \\ $$$${When}\:{x}=−\mathrm{1},{y}=\mathrm{1},{z}=\mathrm{1};\:\frac{{ab}+{bc}+{ca}}{{bc}}=\frac{{a}\left({b}+{c}\right)}{{bc}}+\mathrm{1} \\ $$$${can}\:{get}\:{multiple}\:{values}\:{since}\:{a},{b},{c}\:{can}\:{vary}. \\ $$
Answered by AST last updated on 19/Aug/23
xyz=x^3 ⇒k^((1/2)(((ab+bc+ca)/(abc)))) =k^(1/(8a^3 )) ⇒((ab+bc+ca)/(bc))=(1/(4a^2 ))  When x=y=z ∧ a=b=c;((ab+bc+ca)/(bc))=3  When x=−1,y=1,z=1; ((ab+bc+ca)/(bc))=((a(b+c))/(bc))+1  can get multiple values since a,b,c can vary.
$${xyz}={x}^{\mathrm{3}} \Rightarrow{k}^{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ab}+{bc}+{ca}}{{abc}}\right)} ={k}^{\frac{\mathrm{1}}{\mathrm{8}{a}^{\mathrm{3}} }} \Rightarrow\frac{{ab}+{bc}+{ca}}{{bc}}=\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${When}\:{x}={y}={z}\:\wedge\:{a}={b}={c};\frac{{ab}+{bc}+{ca}}{{bc}}=\mathrm{3} \\ $$$${When}\:{x}=−\mathrm{1},{y}=\mathrm{1},{z}=\mathrm{1};\:\frac{{ab}+{bc}+{ca}}{{bc}}=\frac{{a}\left({b}+{c}\right)}{{bc}}+\mathrm{1} \\ $$$${can}\:{get}\:{multiple}\:{values}\:{since}\:{a},{b},{c}\:{can}\:{vary}. \\ $$
Answered by horsebrand11 last updated on 19/Aug/23
 ⇒x^2  = y^((2b)/a)  and z=y^(b/c)     then y^((2b)/a)  = y^(1+(b/c))     ((2b)/a) = ((b+c)/c)⇒ ab+ca = 2bc   so ((ab+bc+ca)/(bc)) = ((3bc)/(bc)) = 3
$$\:\Rightarrow\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}^{\frac{\mathrm{2b}}{\mathrm{a}}} \:\mathrm{and}\:\mathrm{z}=\mathrm{y}^{\frac{\mathrm{b}}{\mathrm{c}}} \\ $$$$\:\:\mathrm{then}\:\mathrm{y}^{\frac{\mathrm{2b}}{\mathrm{a}}} \:=\:\mathrm{y}^{\mathrm{1}+\frac{\mathrm{b}}{\mathrm{c}}} \\ $$$$\:\:\frac{\mathrm{2b}}{\mathrm{a}}\:=\:\frac{\mathrm{b}+\mathrm{c}}{\mathrm{c}}\Rightarrow\:\mathrm{ab}+\mathrm{ca}\:=\:\mathrm{2bc} \\ $$$$\:\mathrm{so}\:\frac{\mathrm{ab}+\mathrm{bc}+\mathrm{ca}}{\mathrm{bc}}\:=\:\frac{\mathrm{3bc}}{\mathrm{bc}}\:=\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *