Menu Close

What-s-the-value-for-7-




Question Number 196205 by Mastermind last updated on 19/Aug/23
What′s the value for !7 ?
$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{value}\:\mathrm{for}\:!\mathrm{7}\:? \\ $$
Answered by AST last updated on 19/Aug/23
!7=7!(1−(1/(1!))+(1/(2!))−(1/(3!))+(1/(4!))−(1/(5!))+(1/(6!))−(1/(7!)))=1854
$$!\mathrm{7}=\mathrm{7}!\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}−\frac{\mathrm{1}}{\mathrm{5}!}+\frac{\mathrm{1}}{\mathrm{6}!}−\frac{\mathrm{1}}{\mathrm{7}!}\right)=\mathrm{1854} \\ $$
Commented by AST last updated on 19/Aug/23
Generally,!n=n!Σ_(k=0) ^n (((−1)^k )/(k!))
$${Generally},!{n}={n}!\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *