Menu Close

Question-196251




Question Number 196251 by sonukgindia last updated on 20/Aug/23
Answered by MrGHK last updated on 20/Aug/23
x+y=((ln(3))/(ln(2)))  x−y=((2ln(2))/(ln(3)))  (x+y)(x−y)=((ln(3))/(ln(2)))×((2ln(2))/(ln(3)))  x^2 −y^2 =2
$${x}+{y}=\frac{{ln}\left(\mathrm{3}\right)}{{ln}\left(\mathrm{2}\right)} \\ $$$${x}−{y}=\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)}{{ln}\left(\mathrm{3}\right)} \\ $$$$\left({x}+{y}\right)\left({x}−{y}\right)=\frac{{ln}\left(\mathrm{3}\right)}{{ln}\left(\mathrm{2}\right)}×\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)}{{ln}\left(\mathrm{3}\right)} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2} \\ $$
Answered by AST last updated on 20/Aug/23
x−y=2log_3 2;x+y=log_2 3⇒(x+y)(x−y)=x^2 −y^2 =2
$${x}−{y}=\mathrm{2}{log}_{\mathrm{3}} \mathrm{2};{x}+{y}={log}_{\mathrm{2}} \mathrm{3}\Rightarrow\left({x}+{y}\right)\left({x}−{y}\right)={x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2} \\ $$
Commented by York12 last updated on 21/Aug/23
sir please look at   196258
$${sir}\:{please}\:{look}\:{at}\: \\ $$$$\mathrm{196258} \\ $$
Answered by Rasheed.Sindhi last updated on 22/Aug/23
2^(x+y) =3, 3^(x−y) =4;   x^2 −y^2 =?  3^(x−y) =4⇒(2^(x+y) )^(x−y) =2^2   x^2 −y^2 =2
$$\mathrm{2}^{{x}+{y}} =\mathrm{3},\:\mathrm{3}^{{x}−{y}} =\mathrm{4};\:\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =? \\ $$$$\mathrm{3}^{{x}−{y}} =\mathrm{4}\Rightarrow\left(\mathrm{2}^{{x}+{y}} \right)^{{x}−{y}} =\mathrm{2}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *