Question Number 196221 by liuxinnan last updated on 20/Aug/23

Commented by liuxinnan last updated on 20/Aug/23

Commented by mr W last updated on 20/Aug/23

Commented by liuxinnan last updated on 20/Aug/23

Answered by mr W last updated on 21/Aug/23

Commented by mr W last updated on 23/Aug/23

Commented by mr W last updated on 22/Aug/23

Commented by mr W last updated on 23/Aug/23
![from O to A: t=((R cos ϕ)/(u cos θ)) −R sin ϕ=u sin θ ×((R cos ϕ)/(u cos θ))−(g/2)×(((R cos ϕ)/(u cos θ)))^2 −tan ϕ=tan θ −((gR cos ϕ (1+tan^2 θ))/(2u^2 )) let λ=((gR)/(2u^2 )) tan ϕ+tan θ =λ cos ϕ (1+tan^2 θ) λ cos ϕ tan^2 θ−tan θ−tan ϕ+λ cos ϕ=0 ⇒tan θ=((1+(√(1+4λ(sin ϕ−λ cos^2 ϕ))))/(2λ cos ϕ)) at A: U_x =u cos θ U_y =u sin θ−g×((R cos ϕ)/(u cos θ)) =u(sin θ−((2λ cos ϕ)/(cos θ))) =u cos θ[tan θ−2λ cos ϕ (1+tan^2 θ)] V_x =[(1+e)sin^2 ϕ−1]u cos θ−(1+e)sin ϕ cos ϕ u(sin θ−((2λ cos ϕ)/(cos θ))) =u cos θ {(1+e) sin^2 ϕ−1−(1+e)sin ϕ cos ϕ[tan θ−2λ cos ϕ (1+tan^2 θ)]} V_y =(1+e)sin ϕ cos ϕ u cos θ−[(1+e)cos^2 ϕ−1]u cos θ[tan θ−2λ cos ϕ (1+tan^2 θ)] =u cos θ {(1+e)sin ϕ cos ϕ−[(1+e) cos^2 ϕ−1][tan θ−2λ cos ϕ (1+tan^2 θ)]} from A to B: t=((ξR)/u) ξ=(((1+cos ϕ))/(cos θ {(1+e) sin^2 ϕ−1−(1+e)sin ϕ cos ϕ[tan θ−2λ cos ϕ (1+tan^2 θ)]})) R sin ϕ=u cos θ {(1+e)sin ϕ cos ϕ−(e cos^2 ϕ−sin^2 ϕ)[tan θ−2λ cos ϕ (1+tan^2 θ)]}t−((gt^2 )/2) sin ϕ=cos θ {(1+e)sin ϕ cos ϕ−[(1+e) cos^2 ϕ−1][tan θ−2λ cos ϕ (1+tan^2 θ)]}ξ−λξ^2 for a given e we find a λ_(max) such that this equation has one and only one root for 0<ϕ<(π/2). u_(min) =(√((gR)/(2λ_(max) ))) for e=1: u_(min) ≈((√(gR))/(1.274))](https://www.tinkutara.com/question/Q196339.png)
Commented by mr W last updated on 22/Aug/23
