Menu Close

there-is-a-cylinder-on-the-horizontal-plane-and-there-is-a-little-ball-with-mass-m-at-the-center-of-a-circle-on-the-vertical-plane-and-there-is-a-little-hole-in-the-wall-of-the-cylinder-on-the-lift-of




Question Number 196221 by liuxinnan last updated on 20/Aug/23
there is a cylinder on the horizontal plane  and there is a little ball with mass m  at the center of a circle on the vertical plane  and there is a little hole in the wall of  the cylinder on the lift of the ball which  just enough for the ball to pass through  the gravitational acceleration is g  the collision between the ball and  the cylinder wall can be regarded as  an elastic coollision  find all of the quondam speed
$${there}\:{is}\:{a}\:{cylinder}\:{on}\:{the}\:{horizontal}\:{plane} \\ $$$${and}\:{there}\:{is}\:{a}\:{little}\:{ball}\:{with}\:{mass}\:{m} \\ $$$${at}\:{the}\:{center}\:{of}\:{a}\:{circle}\:{on}\:{the}\:{vertical}\:{plane} \\ $$$${and}\:{there}\:{is}\:{a}\:{little}\:{hole}\:{in}\:{the}\:{wall}\:{of} \\ $$$${the}\:{cylinder}\:{on}\:{the}\:{lift}\:{of}\:{the}\:{ball}\:{which} \\ $$$${just}\:{enough}\:{for}\:{the}\:{ball}\:{to}\:{pass}\:{through} \\ $$$${the}\:{gravitational}\:{acceleration}\:{is}\:{g} \\ $$$${the}\:{collision}\:{between}\:{the}\:{ball}\:{and} \\ $$$${the}\:{cylinder}\:{wall}\:{can}\:{be}\:{regarded}\:{as} \\ $$$${an}\:{elastic}\:{coollision} \\ $$$${find}\:{all}\:{of}\:{the}\:{quondam}\:{speed} \\ $$
Commented by liuxinnan last updated on 20/Aug/23
Commented by mr W last updated on 20/Aug/23
there are many possibilities.  do you mean that the ball should fly  through the hole just after one time   collision with the cylinder wall?  the ball can also directly fly through  the hole without collision or after  two times collision etc.
$${there}\:{are}\:{many}\:{possibilities}. \\ $$$${do}\:{you}\:{mean}\:{that}\:{the}\:{ball}\:{should}\:{fly} \\ $$$${through}\:{the}\:{hole}\:{just}\:{after}\:{one}\:{time}\: \\ $$$${collision}\:{with}\:{the}\:{cylinder}\:{wall}? \\ $$$${the}\:{ball}\:{can}\:{also}\:{directly}\:{fly}\:{through} \\ $$$${the}\:{hole}\:{without}\:{collision}\:{or}\:{after} \\ $$$${two}\:{times}\:{collision}\:{etc}. \\ $$
Commented by liuxinnan last updated on 20/Aug/23
zero one two and n times are all ok  maybe have v=f(n)
$${zero}\:{one}\:{two}\:{and}\:{n}\:{times}\:{are}\:{all}\:{ok} \\ $$$${maybe}\:{have}\:{v}={f}\left({n}\right) \\ $$
Answered by mr W last updated on 21/Aug/23
Commented by mr W last updated on 23/Aug/23
let′s consider the case that the  ball flys through the hole after a  single collision with the cylinder  wall.
$${let}'{s}\:{consider}\:{the}\:{case}\:{that}\:{the} \\ $$$${ball}\:{flys}\:{through}\:{the}\:{hole}\:{after}\:{a} \\ $$$${single}\:{collision}\:{with}\:{the}\:{cylinder} \\ $$$${wall}. \\ $$
Commented by mr W last updated on 22/Aug/23
Commented by mr W last updated on 23/Aug/23
from O to A:  t=((R cos ϕ)/(u cos θ))  −R sin ϕ=u sin θ ×((R cos ϕ)/(u cos θ))−(g/2)×(((R cos ϕ)/(u cos θ)))^2   −tan ϕ=tan θ −((gR cos ϕ (1+tan^2  θ))/(2u^2 ))  let λ=((gR)/(2u^2 ))  tan ϕ+tan θ =λ cos ϕ (1+tan^2  θ)  λ cos ϕ tan^2  θ−tan θ−tan ϕ+λ cos ϕ=0  ⇒tan θ=((1+(√(1+4λ(sin ϕ−λ cos^2  ϕ))))/(2λ cos ϕ))  at A:  U_x =u cos θ  U_y =u sin θ−g×((R cos ϕ)/(u cos θ))      =u(sin θ−((2λ cos ϕ)/(cos θ)))      =u cos θ[tan θ−2λ cos ϕ (1+tan^2  θ)]  V_x =[(1+e)sin^2  ϕ−1]u cos θ−(1+e)sin ϕ cos ϕ u(sin θ−((2λ cos ϕ)/(cos θ)))       =u cos θ {(1+e) sin^2  ϕ−1−(1+e)sin ϕ cos ϕ[tan θ−2λ cos ϕ (1+tan^2  θ)]}  V_y =(1+e)sin ϕ cos ϕ u cos θ−[(1+e)cos^2  ϕ−1]u cos θ[tan θ−2λ cos ϕ (1+tan^2  θ)]     =u cos θ {(1+e)sin ϕ cos ϕ−[(1+e) cos^2  ϕ−1][tan θ−2λ cos ϕ (1+tan^2  θ)]}  from A to B:  t=((ξR)/u)  ξ=(((1+cos ϕ))/(cos θ {(1+e) sin^2  ϕ−1−(1+e)sin ϕ cos ϕ[tan θ−2λ cos ϕ (1+tan^2  θ)]}))  R sin ϕ=u cos θ {(1+e)sin ϕ cos ϕ−(e cos^2  ϕ−sin^2  ϕ)[tan θ−2λ cos ϕ (1+tan^2  θ)]}t−((gt^2 )/2)  sin ϕ=cos θ {(1+e)sin ϕ cos ϕ−[(1+e) cos^2  ϕ−1][tan θ−2λ cos ϕ (1+tan^2  θ)]}ξ−λξ^2   for a given e we find a λ_(max)  such that  this equation has one and only one   root for 0<ϕ<(π/2).  u_(min) =(√((gR)/(2λ_(max) )))  for e=1: u_(min) ≈((√(gR))/(1.274))
$${from}\:{O}\:{to}\:{A}: \\ $$$${t}=\frac{{R}\:\mathrm{cos}\:\varphi}{{u}\:\mathrm{cos}\:\theta} \\ $$$$−{R}\:\mathrm{sin}\:\varphi={u}\:\mathrm{sin}\:\theta\:×\frac{{R}\:\mathrm{cos}\:\varphi}{{u}\:\mathrm{cos}\:\theta}−\frac{{g}}{\mathrm{2}}×\left(\frac{{R}\:\mathrm{cos}\:\varphi}{{u}\:\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \\ $$$$−\mathrm{tan}\:\varphi=\mathrm{tan}\:\theta\:−\frac{{gR}\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)}{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$${let}\:\lambda=\frac{{gR}}{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\varphi+\mathrm{tan}\:\theta\:=\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right) \\ $$$$\lambda\:\mathrm{cos}\:\varphi\:\mathrm{tan}^{\mathrm{2}} \:\theta−\mathrm{tan}\:\theta−\mathrm{tan}\:\varphi+\lambda\:\mathrm{cos}\:\varphi=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}\lambda\left(\mathrm{sin}\:\varphi−\lambda\:\mathrm{cos}^{\mathrm{2}} \:\varphi\right)}}{\mathrm{2}\lambda\:\mathrm{cos}\:\varphi} \\ $$$${at}\:{A}: \\ $$$${U}_{{x}} ={u}\:\mathrm{cos}\:\theta \\ $$$${U}_{{y}} ={u}\:\mathrm{sin}\:\theta−{g}×\frac{{R}\:\mathrm{cos}\:\varphi}{{u}\:\mathrm{cos}\:\theta} \\ $$$$\:\:\:\:={u}\left(\mathrm{sin}\:\theta−\frac{\mathrm{2}\lambda\:\mathrm{cos}\:\varphi}{\mathrm{cos}\:\theta}\right) \\ $$$$\:\:\:\:={u}\:\mathrm{cos}\:\theta\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right] \\ $$$${V}_{{x}} =\left[\left(\mathrm{1}+{e}\right)\mathrm{sin}^{\mathrm{2}} \:\varphi−\mathrm{1}\right]{u}\:\mathrm{cos}\:\theta−\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\:{u}\left(\mathrm{sin}\:\theta−\frac{\mathrm{2}\lambda\:\mathrm{cos}\:\varphi}{\mathrm{cos}\:\theta}\right) \\ $$$$\:\:\:\:\:={u}\:\mathrm{cos}\:\theta\:\left\{\left(\mathrm{1}+{e}\right)\:\mathrm{sin}^{\mathrm{2}} \:\varphi−\mathrm{1}−\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right]\right\} \\ $$$${V}_{{y}} =\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\:{u}\:\mathrm{cos}\:\theta−\left[\left(\mathrm{1}+{e}\right)\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{1}\right]{u}\:\mathrm{cos}\:\theta\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right] \\ $$$$\:\:\:={u}\:\mathrm{cos}\:\theta\:\left\{\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi−\left[\left(\mathrm{1}+{e}\right)\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{1}\right]\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right]\right\} \\ $$$${from}\:{A}\:{to}\:{B}: \\ $$$${t}=\frac{\xi{R}}{{u}} \\ $$$$\xi=\frac{\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)}{\mathrm{cos}\:\theta\:\left\{\left(\mathrm{1}+{e}\right)\:\mathrm{sin}^{\mathrm{2}} \:\varphi−\mathrm{1}−\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right]\right\}} \\ $$$${R}\:\mathrm{sin}\:\varphi={u}\:\mathrm{cos}\:\theta\:\left\{\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi−\left({e}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{sin}^{\mathrm{2}} \:\varphi\right)\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right]\right\}{t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{sin}\:\varphi=\mathrm{cos}\:\theta\:\left\{\left(\mathrm{1}+{e}\right)\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi−\left[\left(\mathrm{1}+{e}\right)\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{1}\right]\left[\mathrm{tan}\:\theta−\mathrm{2}\lambda\:\mathrm{cos}\:\varphi\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\right]\right\}\xi−\lambda\xi^{\mathrm{2}} \\ $$$${for}\:{a}\:{given}\:{e}\:{we}\:{find}\:{a}\:\lambda_{{max}} \:{such}\:{that} \\ $$$${this}\:{equation}\:{has}\:{one}\:{and}\:{only}\:{one}\: \\ $$$${root}\:{for}\:\mathrm{0}<\varphi<\frac{\pi}{\mathrm{2}}. \\ $$$${u}_{{min}} =\sqrt{\frac{{gR}}{\mathrm{2}\lambda_{{max}} }} \\ $$$${for}\:{e}=\mathrm{1}:\:{u}_{{min}} \approx\frac{\sqrt{{gR}}}{\mathrm{1}.\mathrm{274}} \\ $$
Commented by mr W last updated on 22/Aug/23

Leave a Reply

Your email address will not be published. Required fields are marked *