Menu Close

Question-196275




Question Number 196275 by AROUNAMoussa last updated on 21/Aug/23
Answered by MM42 last updated on 21/Aug/23
⟨ABD=35⇒AD=AB  ⟨BCD=55  ((AB)/(AC))=((sinx)/(sin130))   &  ((AD)/(AC))=((sin(55−x))/(sin65))  ⇒sinx×sin65=2sin65×cos65×sin(55−x)  ⇒sinx=2cos65sin(55−x)=sin(55−x+65)+sin(55−x−65)  ⇒sinx=sin(120−x)−sin(x+10)  ⇒sinx=((√3)/2)cosx−(1/2)sinx−cos10sinx−sin10cosx  ((3/2)−cos10)sinx=(((√3)/2)−sin10)cosx  tanx=(((√3)−2sin10)/(3−2cos10))   ⇒x=tan^(−1) ((((√3)−2sin10)/(3−2cos10)))∼53^o
$$\langle{ABD}=\mathrm{35}\Rightarrow{AD}={AB} \\ $$$$\langle{BCD}=\mathrm{55} \\ $$$$\frac{{AB}}{{AC}}=\frac{{sinx}}{{sin}\mathrm{130}}\:\:\:\&\:\:\frac{{AD}}{{AC}}=\frac{{sin}\left(\mathrm{55}−{x}\right)}{{sin}\mathrm{65}} \\ $$$$\Rightarrow{sinx}×{sin}\mathrm{65}=\mathrm{2}{sin}\mathrm{65}×{cos}\mathrm{65}×{sin}\left(\mathrm{55}−{x}\right) \\ $$$$\Rightarrow{sinx}=\mathrm{2}{cos}\mathrm{65}{sin}\left(\mathrm{55}−{x}\right)={sin}\left(\mathrm{55}−{x}+\mathrm{65}\right)+{sin}\left(\mathrm{55}−{x}−\mathrm{65}\right) \\ $$$$\Rightarrow{sinx}={sin}\left(\mathrm{120}−{x}\right)−{sin}\left({x}+\mathrm{10}\right) \\ $$$$\Rightarrow{sinx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cosx}−\frac{\mathrm{1}}{\mathrm{2}}{sinx}−{cos}\mathrm{10}{sinx}−{sin}\mathrm{10}{cosx} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}−{cos}\mathrm{10}\right){sinx}=\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−{sin}\mathrm{10}\right){cosx} \\ $$$${tanx}=\frac{\sqrt{\mathrm{3}}−\mathrm{2}{sin}\mathrm{10}}{\mathrm{3}−\mathrm{2}{cos}\mathrm{10}} \\ $$$$\:\Rightarrow{x}={tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}}−\mathrm{2}{sin}\mathrm{10}}{\mathrm{3}−\mathrm{2}{cos}\mathrm{10}}\right)\sim\mathrm{53}^{{o}} \\ $$$$ \\ $$$$ \\ $$
Commented by AROUNAMoussa last updated on 21/Aug/23
Merci bcp !
$${Merci}\:{bcp}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *