Menu Close

Question-196277




Question Number 196277 by cortano12 last updated on 21/Aug/23
$$\:\:\:\:\:\cancel{\underline{\underbrace{ }}\:} \\ $$
Answered by mr W last updated on 21/Aug/23
say z=sin^3  x  (dz/dy)=(dz/dx)×(dx/dy)=3 sin^2  x cos x×(1/(−2 sin 2x))=−(3/4) sin x  (d^2 z/dy^2 )=(d/dy)((dz/dy))=(d/dx)((dz/dy))×(dx/dy)=−((3 cos x)/4)×(1/(−2 sin 2x))        =(3/(16 sin x)) ✓
$${say}\:{z}=\mathrm{sin}^{\mathrm{3}} \:{x} \\ $$$$\frac{{dz}}{{dy}}=\frac{{dz}}{{dx}}×\frac{{dx}}{{dy}}=\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}\:{x}×\frac{\mathrm{1}}{−\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}}=−\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{sin}\:{x} \\ $$$$\frac{{d}^{\mathrm{2}} {z}}{{dy}^{\mathrm{2}} }=\frac{{d}}{{dy}}\left(\frac{{dz}}{{dy}}\right)=\frac{{d}}{{dx}}\left(\frac{{dz}}{{dy}}\right)×\frac{{dx}}{{dy}}=−\frac{\mathrm{3}\:\mathrm{cos}\:{x}}{\mathrm{4}}×\frac{\mathrm{1}}{−\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{16}\:\mathrm{sin}\:{x}}\:\checkmark \\ $$
Answered by AST last updated on 21/Aug/23
y=1−2sin^2 x⇒sin^3 x=(((1−y)/2))^(3/2) =(((1−y)^(3/2) )/(2(√2)))  ⇒y′(sin^3 x)=((−3)/(4(√2)))(1−y)^(1/2) ⇒y′′(sin^3 x)=(3/( 8(√2)(√(1−y))))  =(3/( 8(√2)(√(2sin^2 x))))=(3/(16sinx))
$${y}=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {x}\Rightarrow{sin}^{\mathrm{3}} {x}=\left(\frac{\mathrm{1}−{y}}{\mathrm{2}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\left(\mathrm{1}−{y}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{y}'\left({sin}^{\mathrm{3}} {x}\right)=\frac{−\mathrm{3}}{\mathrm{4}\sqrt{\mathrm{2}}}\left(\mathrm{1}−{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \Rightarrow{y}''\left({sin}^{\mathrm{3}} {x}\right)=\frac{\mathrm{3}}{\:\mathrm{8}\sqrt{\mathrm{2}}\sqrt{\mathrm{1}−{y}}} \\ $$$$=\frac{\mathrm{3}}{\:\mathrm{8}\sqrt{\mathrm{2}}\sqrt{\mathrm{2}{sin}^{\mathrm{2}} {x}}}=\frac{\mathrm{3}}{\mathrm{16}{sinx}} \\ $$
Answered by horsebrand11 last updated on 22/Aug/23
   �
$$\:\:\:\underline{\underbrace{}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *