Menu Close

If-a-regular-n-polygon-can-be-divided-into-n-identical-equilateral-triangles-then-n-6-




Question Number 196320 by sniper237 last updated on 22/Aug/23
  If  a  regular n−polygon can   be divided into  n  identical    equilateral triangles then  n=6
$$\:\:{If}\:\:{a}\:\:{regular}\:{n}−{polygon}\:{can} \\ $$$$\:{be}\:{divided}\:{into}\:\:{n}\:\:{identical}\:\: \\ $$$${equilateral}\:{triangles}\:{then}\:\:{n}=\mathrm{6} \\ $$
Answered by Rasheed.Sindhi last updated on 23/Aug/23
n−polygon consists n equilateral triangles  ∴ Central angle =60      Central angle =  ((360)/n)=60⇒n=6
$${n}−{polygon}\:{consists}\:{n}\:\boldsymbol{{equilateral}}\:\boldsymbol{{triangles}} \\ $$$$\therefore\:{Central}\:{angle}\:=\mathrm{60} \\ $$$$\:\:\:\:{Central}\:{angle}\:=\:\:\frac{\mathrm{360}}{{n}}=\mathrm{60}\Rightarrow{n}=\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *