Menu Close

n-0-arg-n-2-n-1-i-pi-2-




Question Number 196325 by sniper237 last updated on 22/Aug/23
Σ_(n=0) ^∞ arg(n^2 +n+1+i)= π/2
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{arg}\left({n}^{\mathrm{2}} +{n}+\mathrm{1}+{i}\right)=\:\pi/\mathrm{2}\: \\ $$
Answered by witcher3 last updated on 22/Aug/23
=Σ_(n≥0) tan^(−1) ((1/(1+n+n^2 )))=Σ_(n≥0) tan^(−1) (((n+1−n)/(1+(n+1)n)))  =Σ_(n≥0) tan^(−1) (n+1)−tan^(−1) (n)  =lim_(x→∞) Σ_(n=0) ^x tan^(−1) (n+1)−tan^(−1) (n)=lim_(x→∞) tan^(−1) (1+x)=(π/2)
$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\right)=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{n}+\mathrm{1}−\mathrm{n}}{\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)\mathrm{n}}\right) \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}\right) \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\mathrm{x}} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}tan}^{−\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)=\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *