Menu Close

n-0-arg-n-2-n-1-i-pi-2-




Question Number 196325 by sniper237 last updated on 22/Aug/23
Σ_(n=0) ^∞ arg(n^2 +n+1+i)= π/2
n=0arg(n2+n+1+i)=π/2
Answered by witcher3 last updated on 22/Aug/23
=Σ_(n≥0) tan^(−1) ((1/(1+n+n^2 )))=Σ_(n≥0) tan^(−1) (((n+1−n)/(1+(n+1)n)))  =Σ_(n≥0) tan^(−1) (n+1)−tan^(−1) (n)  =lim_(x→∞) Σ_(n=0) ^x tan^(−1) (n+1)−tan^(−1) (n)=lim_(x→∞) tan^(−1) (1+x)=(π/2)
=n0tan1(11+n+n2)=n0tan1(n+1n1+(n+1)n)=n0tan1(n+1)tan1(n)=limxxn=0tan1(n+1)tan1(n)=limtanx1(1+x)=π2

Leave a Reply

Your email address will not be published. Required fields are marked *