Menu Close

Question-196303




Question Number 196303 by sonukgindia last updated on 22/Aug/23
Answered by sniper237 last updated on 22/Aug/23
Σ_(n=1) ^∞  Im((e^(iπ/4) /2))^n =Im(Σ_(n=1) ^∞ (e^(iπ/4) /2)^n )  = Im (((e^(iπ/4) /2)/(1−e^(iπ/4) /2)))
n=1Im(eiπ/42)n=Im(n=1(eiπ/4/2)n)=Im(eiπ/4/21eiπ/4/2)
Commented by sonukgindia last updated on 22/Aug/23
explain this
explainthis
Commented by JDamian last updated on 22/Aug/23
1.   sin α = Im{e^(iα) }  2.   Σ(Im{z_i })  =  Im{Σz_i }
1.sinα=Im{eiα}2.Σ(Im{zi})=Im{Σzi}
Answered by Mathspace last updated on 22/Aug/23
s(x)=Σ_(n=1) ^∞ ((sin(nx))/2^n ) ⇒  s(x)=Im(Σ_(n=1) ^∞ (e^(inx) /2^n )) but  Σ_(n=1) ^∞ (e^(inx) /2^n )=Σ_(n=1) ^∞ ((1/2)e^(ix) )^n   (1/(1−(1/2)e^(ix) ))  (look that ∣(1/2)e^(ix) ∣<1)  =(2/(2−cosx−isinx))  =((2(2−cosx+isinx))/((2−cosx)^2 +sin^2 x))  ⇒s(x)=((2sinx)/(4−4cosx +1))  =((2sinx)/(5−4cosx))  and Σ_(n=1) ^∞ ((sin(((nπ)/4)))/2^n )  =s((π/4))=((2sin((π/4)))/(5−4cos((π/4))))  =((2×(1/( (√2))))/(5−4.((√2)/2)))=((√2)/(5−2(√2)))
s(x)=n=1sin(nx)2ns(x)=Im(n=1einx2n)butn=1einx2n=n=1(12eix)n1112eix(lookthat12eix∣<1)=22cosxisinx=2(2cosx+isinx)(2cosx)2+sin2xs(x)=2sinx44cosx+1=2sinx54cosxandn=1sin(nπ4)2n=s(π4)=2sin(π4)54cos(π4)=2×1254.22=2522

Leave a Reply

Your email address will not be published. Required fields are marked *