Menu Close

Question-196337




Question Number 196337 by SaRahAli last updated on 22/Aug/23
Answered by MM42 last updated on 22/Aug/23
lim_(x→∞)  ((ln(1+(a/x)))/(1/x)) =^((1/x)= u) lim_(u→0)  ((ln(1+au))/u)  hop=lim_(u→0)  ((a/(1+au))/1) =a ✓
$${lim}_{{x}\rightarrow\infty} \:\frac{{ln}\left(\mathrm{1}+\frac{{a}}{{x}}\right)}{\frac{\mathrm{1}}{{x}}}\:\overset{\frac{\mathrm{1}}{{x}}=\:{u}} {=}{lim}_{{u}\rightarrow\mathrm{0}} \:\frac{{ln}\left(\mathrm{1}+{au}\right)}{{u}} \\ $$$${hop}={lim}_{{u}\rightarrow\mathrm{0}} \:\frac{\frac{{a}}{\mathrm{1}+{au}}}{\mathrm{1}}\:={a}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *