Question Number 196408 by Erico last updated on 24/Aug/23
$$\mathrm{Calcul}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\mathrm{lnt}}{\:\sqrt{\mathrm{t}}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}\mathrm{dt} \\ $$
Answered by qaz last updated on 24/Aug/23
$$\int_{\mathrm{0}} ^{\infty} \frac{{lnt}}{\:\sqrt{{t}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}=\frac{\partial}{\partial{a}}\mid_{{a}=−\mathrm{1}/\mathrm{2}} \int_{\mathrm{0}} ^{\infty} \frac{{t}^{{a}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=−\frac{\partial}{\partial{a}}\mid_{{a}=−\mathrm{1}/\mathrm{2}} \frac{\pi}{\mathrm{2}}{csc}\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\pi\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\mathrm{cot}\:\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\pi\right){csc}\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\pi\right)\mid_{{a}=−\mathrm{1}/\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{2}}\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$
Answered by Mathspace last updated on 25/Aug/23
$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{lnt}}{\:\sqrt{{t}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}\:\:\:\:\left(\sqrt{{t}}={u}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}{lnu}}{{u}\left(\mathrm{1}+{u}^{\mathrm{4}} \right)}\left(\mathrm{2}{u}\right){du} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnu}}{\mathrm{1}+{u}^{\mathrm{4}} }{du}\:\:\:\left({u}^{\mathrm{4}} ={x}\right) \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)}{\mathrm{1}+{x}}×\frac{\mathrm{1}}{\mathrm{4}}{x}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {lnx}}{\mathrm{1}+{x}}{dx} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:\:\:\:\:\:\:\:\:−\mathrm{1}<{a}<\mathrm{1} \\ $$$${f}^{'} \left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}}{lnx}\:{dx}\:\Rightarrow \\ $$$$\mathrm{4}{I}={f}^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\:\:{but}\:{f}\left({a}\right)=\frac{\pi}{{sin}\left(\pi{a}\right)} \\ $$$$\Rightarrow{f}^{'} \left({a}\right)=\pi.\frac{−\pi{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)} \\ $$$$=−\pi^{\mathrm{2}} \frac{{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)}\:\Rightarrow \\ $$$${f}^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=−\pi^{\mathrm{2}} \frac{{cos}\left(\frac{\pi}{\mathrm{4}}\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=−\pi^{\mathrm{2}} .\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}.\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}=−\pi^{\mathrm{2}} \sqrt{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{4}}{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Rightarrow{I}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\pi^{\mathrm{2}} \\ $$