Menu Close

Calcul-0-lnt-t-1-t-2-dt-




Question Number 196408 by Erico last updated on 24/Aug/23
Calcul ∫^( +∞) _( 0) ((lnt)/( (√t)(1+t^2 )))dt
Calcul0+lntt(1+t2)dt
Answered by qaz last updated on 24/Aug/23
∫_0 ^∞ ((lnt)/( (√t)(1+t^2 )))dt=(∂/∂a)∣_(a=−1/2) ∫_0 ^∞ (t^a /(1+t^2 ))dt  =−(∂/∂a)∣_(a=−1/2) (π/2)csc(((a+1)/2)π)=(π^2 /4)cot (((a+1)/2)π)csc(((a+1)/2)π)∣_(a=−1/2)   =(((√2)π^2 )/4)
0lntt(1+t2)dt=aa=1/20ta1+t2dt=aa=1/2π2csc(a+12π)=π24cot(a+12π)csc(a+12π)a=1/2=2π24
Answered by Mathspace last updated on 25/Aug/23
I=∫_0 ^∞  ((lnt)/( (√t)(1+t^2 )))dt    ((√t)=u)  =∫_0 ^∞  ((2lnu)/(u(1+u^4 )))(2u)du  =4∫_0 ^∞   ((lnu)/(1+u^4 ))du   (u^4 =x)  =4∫_0 ^∞   ((ln(x^(1/4) ))/(1+x))×(1/4)x^((1/4)−1) dx  =(1/4)∫_0 ^∞   ((x^((1/4)−1) lnx)/(1+x))dx  f(a)=∫_0 ^∞   (x^(a−1) /(1+x))dx         −1<a<1  f^′ (a)=∫_0 ^∞ (x^(a−1) /(1+x))lnx dx ⇒  4I=f^′ ((1/4))  but f(a)=(π/(sin(πa)))  ⇒f^′ (a)=π.((−πcos(πa))/(sin^2 (πa)))  =−π^2 ((cos(πa))/(sin^2 (πa))) ⇒  f^′ ((1/4))=−π^2 ((cos((π/4)))/(sin^2 ((π/4))))  =−π^2 .(1/( (√2).((1/2))))=−π^2 (√2)  I=(1/4)f^′ ((1/4))⇒I=−((√2)/4)π^2
I=0lntt(1+t2)dt(t=u)=02lnuu(1+u4)(2u)du=40lnu1+u4du(u4=x)=40ln(x14)1+x×14x141dx=140x141lnx1+xdxf(a)=0xa11+xdx1<a<1f(a)=0xa11+xlnxdx4I=f(14)butf(a)=πsin(πa)f(a)=π.πcos(πa)sin2(πa)=π2cos(πa)sin2(πa)f(14)=π2cos(π4)sin2(π4)=π2.12.(12)=π22I=14f(14)I=24π2

Leave a Reply

Your email address will not be published. Required fields are marked *