Menu Close

If-f-x-x-0-dt-t-e-f-t-determine-f-x-




Question Number 196427 by Erico last updated on 24/Aug/23
If  f(x)=∫^( x) _( 0) (dt/(t+e^(−f(t)) )), determine f(x)
Iff(x)=0xdtt+ef(t),determinef(x)
Answered by witcher3 last updated on 25/Aug/23
f(0)=0  f′(x)=(1/(x+e^(−f(x)) ))  ⇔f′(x)(x+e^(−f(x)) )=1  f(x)=y  ⇔(dy/dx)(x+e^(−y) )=1  ⇔dy(x+e^(−y) )−dx=0  ⇔dy(x+e^(−y) )f(y)−f(y)dx=0,let f bee  such thatf(y)=−f′(y)⇒f(y)=e^(−y)   ⇒(x+e^(−y) )e^(−y) dy−e^(−y) dx=0  exacte Differential Equation  Ψ(x,y)solution  ∂_y Ψ=(x+e^(−y) )e^(−y) ⇒Ψ(x,y)=−xe^(−y) −(e^(−2y) /2)+f(x)  ∂_x Ψ=−e^(−y) ⇒Ψ=−xe^(−y) +f(y)  ⇒f′(x)−e^(−y) =−e^(−y) ⇒f(x)=c  xe^(−y) +f′(y)=xe^(−y) +e^(−2y) ⇒f(y)=−(e^(−2y) /2)  Ψ(x,y)=−xe^(−y) −(e^(−2y) /2)+c=0  implicite solution  ⇒f′(x)=0⇒f=c,−xe^(−y) +  Ψ(x,y)=−xe^(−y) −(e^(−2y) /2)+c  Ψ(x,f(x))=−xe^(−f(x)) −(e^(−2f(x)) /2)=C  −xt−(t^2 /2)=c  ⇒t^2 +2xt−2c=0  t=((−2x−(√(4x^2 +8c)))/2)  −ln(−x+(√(x^2 +2c)))=ln((((√(x^2 +2c))+x)/(2c)))=f(x)
f(0)=0f(x)=1x+ef(x)f(x)(x+ef(x))=1f(x)=ydydx(x+ey)=1dy(x+ey)dx=0dy(x+ey)f(y)f(y)dx=0,letfbeesuchthatf(y)=f(y)f(y)=ey(x+ey)eydyeydx=0exacteDifferentialEquationΨ(x,y)solutionyΨ=(x+ey)eyΨ(x,y)=xeye2y2+f(x)xΨ=eyΨ=xey+f(y)f(x)ey=eyf(x)=cxey+f(y)=xey+e2yf(y)=e2y2Ψ(x,y)=xeye2y2+c=0implicitesolutionf(x)=0f=c,xey+Ψ(x,y)=xeye2y2+cΨ(x,f(x))=xef(x)e2f(x)2=Cxtt22=ct2+2xt2c=0t=2x4x2+8c2ln(x+x2+2c)=ln(x2+2c+x2c)=f(x)
Answered by mr W last updated on 05/Jul/24
f(x)=∫_0 ^x (dt/(t+e^(−f(t)) ))  f′(x)=(1/(x+e^(−f(x)) ))  (dy/dx)=(1/(x+e^(−y) ))  (dx/dy)=x+e^(−y)   (dx/dy)−x=e^(−y)   ⇒x=((∫e^(−y) e^(−y) dy+(C/2))/e^(−y) )=((−e^(−2y) +C)/(2e^(−y) ))=(1/2)(Ce^y −e^(−y) )  ⇒Ce^y −e^(−y) =2x  ⇒Ce^(2y) −2xe^y −1=0  ⇒e^y =((x±(√(x^2 +C)))/C)  ⇒y=ln ((x±(√(x^2 +C)))/C)
f(x)=0xdtt+ef(t)f(x)=1x+ef(x)dydx=1x+eydxdy=x+eydxdyx=eyx=eyeydy+C2ey=e2y+C2ey=12(Ceyey)Ceyey=2xCe2y2xey1=0ey=x±x2+CCy=lnx±x2+CC

Leave a Reply

Your email address will not be published. Required fields are marked *